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ABSTRACT

Solar radiation pressure exerts a mechanical force upon the surface of
a spacecraft which intercepts the stream of photons coming from the Sun.
For high-precision spacecraft attitude control and orbit determination, it is
necessary to generate a precise mathematical model of the solar radiation
force and the moment of that force; such a model must be more accurate
than the currently used ''flat surface' model, based on the radiation force

on the effective cross-section area of the irradiated body.

In this report the general expressions for the solar radiation force and
torques are derived in the vectorial form for any given reflecting surface,
provided that the reflecting characteristics of the surface, as well as the
value of the solar constant, are known. An appropriate choice of a spacecraft-
fixed frame of reference leads to relatively simple expressions for the solar
radiation forces and torques in terins of the functions of the Sun-spacecrait-

Earth angle.

The advantage of such a model over the standard flat-surface model is
obvious, and it is very easy to find the expressions for the error of the stan-
dard model for any given reflecting surface. Another advantage of the model

is that it can be used for the effects of the air drag, solar wind, etc.

JPL Technical Memorandum 33-494 vii



I. INTRODUCTION

To derive the expression for the mechanical force exerted by radiation
upon an intercepting surface, let us consider an elementary flat surface area,
perpendicular to the direction of the incoming radiation. Let S (Fig. 1) be
such a surface and let J be the radiant energy per unit area and per unit of
time, impinging on S. One part of this energy, (1 - Y)J, Y <1, will be
absorbed by the surface and reradiated isotropically into space. The remain-
ing part, YJ, will be reflected according to a certain reflection law £(6),
where 8 is the angle between the direction of the reflected particle and the
normal to the surface area S. If the reflection is purely specular, f(9) will
be the two-dimensional Dirac delta function. If the reflection is totally

diffuse, the reflected particles obey Lambert's reflection law (Ref. 1):
f(8) = cos®.
The total reflected radiation is in fact the combination of these two types of

reflection. If we denote by o the surface area of the hemisphere shown on

Fig. 1, and by dw the elementary solid angle
dw = sin6 d¢$ d6,

the total reflected radiation is

YJ = Idw

where I is the radiant flux per unit solid angle on the h2misphere o.

[PL Technical Memorandum 33-494



Now set

I=1,1(8)

where I0 is a constant. Subsequently, integrating over the area of the

hemisphere, we find

2 /2
of a¢ £(6) sin © do = IjA(f),
0 0

YJ

1
-

where
1 for specular reflection
A(f) =
m for diffuse reflection.

The momentum of the radiation is J/c, where c is the speed of light.
The momentum exchange due to the reflected beam of photons in the direction

of the normal to the surface area S is

I
IEcos 0 dw = __CO_ f(8) sin 6 cos 6 d¢ de,

a [

and the tangential component of the momentum is zero. After an integration

over the surface of the hemisphere o, the integral above becomes
2 n/2
I YJ .
S cos 6 dw = :K(_f')'[ d¢f f(0) sin © cos 6 d6 = %B(f),
o 0 0

where
1 for specular reflection
B(f) =

2/3 for diffuse reflection.
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The total pressure is the sum of momentum exchanges due to the incident

and reflected radiation
P = % [1 + YB(f)].

Since J is inversely proportional to rgp (rs]::> being the heliocentric

distance of the irradiated body) the acceleration due to the radiation pres-

sure is
__k
2sRp ~ 2
SP
where
J
K =__(_)SI+YB§f!.
¢ M
Here, JO is the value of J at the distance of the Earth from the Sun (one

astronomical unit), known as the solar constant:

JO = 1.353 X 1()3 watts/meter2 (Ref. 2),

while M is the mass of the reflecting body and S is the irradiated surface

area.

JPL Technical Memorandum 33-494
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II. SOLAR RADIATION FC.LCE ON AN INCLINED SURFACE

Let us assume now that the direction of the incoming radiation is
inclined by an angle 6 to the normal to the elementary surface area S (Fig. 2).

The incident radiation produces the force

FI = FN cos 6

where FN is the radiation force for ® = 0, i.e., in the case when the incident

radiation is perpendicular to the intercepting surface, considered in the pre-

ceding section. This force is given by

K
_ _SRP
Fy = 2 S (1)
SP
where K is the solar radiation pressure constant. The value of this con-

SRP
stant can be easily calculated from the solar constant J;. It is

(av)® A

KSRP - c

kg m/sz-

Taking for the value of the astronomical unit (Ref. 3)
AU = 149,597,893.0 km
and for the speed of light (Ref. 3)

c= 299,792.5 km/s

we firally compute

17 2
Kgpp ° 1.0227 X 10" " kg n/s". (2)

JPL Technical Memorandum 33-494



The component of the force FI along the normal to the surface area S is the

pressure force (Fig. 2)

2
= = 3
PI FI cos O FN cos @, (3)

and the component of the same force in the tangential plane to the surface is

TI = FI sin @ = FN sin 6 cos 6. (4)

As mentioned beforehand, of all the photons impinging on the surface S,
the portion of 1 - y remains absorbed and reradiated isotropically into the
neighboring space, while the remaining portion Y is reflected specularly or
diffusely. Let 8y be the portion of the specularly reflected photons. The

force produced by the reflection, after the collision with the surface S, is
FR = BYF r

and the components of this force along the normal to the surface of collision

and in the tangential plane are

F_cos 8

Pp = Fr

T F_sin@

R R

so that, substituting F_, and F,, we finally find, in terms of F

R r N’
P_ = BYF. cos’e (5)
R - Py
and
TR = pYFN sin 6 cos 0. (6)

JPL Technical Memorandum 33-494



The force exerted on the surface S by the diffusely reflected photons, (1- B)y,

is perpendicular to S. Its magnitude is

FD = %(l_ B)FN cos 0. (7)

The total radiation force along the normal to the surface is then the sum

and the total tangential force is

I R’
Substituting PI' P_, FD’ TI’ and TR from Egs. (3-7), we obtain, in terms
of FN:
P..=F [(1 + BY) cosze +-2—Y(1—- B) cos 9] (8)
N N 3
and
T = FN(l - BY) sin 8 cos 6. (9)

The polygon of forces and the resultant force R are shown on Fig. 2. The

magnitude of the resultant force is

RN = FN cos @ \/;{1+K2 cose+K3 cos 26 (10)
where
2
Ky = 1+ p2y2 +i}-(1 - 8’
3
K2 =3 (1 -Y)N1 + BY)
K3 = ZﬁY.

JPL Technical Memorandum 33-494



The angie between the direction of the resultant force and the normal to the

surface (oriented toward the surface) is

OR = arctan

(1 - BY) sin®
57 n ] (11)

£Y(1 - B)+ (1 + BY) cos eJ

JPL Technical Memorandum 33.494
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10

OI. COMPUTATION OF THE SOLAR RADIATION FORCE

Consider an infinitesimally small element dS of the irradiated
reflecting surface S (Fig. 3), and let N* be the unit vector of the normal to the
surface at the point A (x,y, z) oriented in such a2 manner that 0< 6 = 90 deg.

i ®&(x.y,z) = 0 is the reflecting surface, then, obviously,

=% _ grad ®
= ata 3]’ (12)
and the oriented vector element of surface is
d§=N’°‘ds=2§1 dy dz + &, dz dx + e, dx dy, (13)

where gl’ EZ’ 33 are the unit vectors of a reference frame xyz. Hence it is

easy to see that

ds = dydz _ dzdx _ _dxdy _ (14)

l_ﬁ* ) Ell IN* ’ E?_l IN* ’ E3!

The unit vector of the direction of the tangential force T* lies in the
plane containing the normal, incident and reflected rays, which pass through
the point A. Also T* is directed toward the half of the plane in which the
source of the light is, so that the angle between T* and the direction of the
light source is acute. Denoting by u the unit vector of the Spacecraft-Sun

direction, we find, from the conditions

T* - N* = 0
(uxN*) . T* = 0
u.T*% = sin 6
that T* is given by
T = Ty o
T s o N* cot 6. (15)

JPL Technical Memorandum 33-494



Denote by dF the resultant radiation force acting upon the element

of surface dS. Since

dF = _N*dP,_, - T% dT,

N
and since, from Eqs. (8) and (9),

apy = [(1 + BY) cos’e +&Y(1 - p) cos e]dFN

dT = (1 - BY) sin© cos 6 dFN

where, from Eq. (1),

4F. - DSRP
N r2
SP

ds = K(rSP) ds,

we can write, for the elementary radiation force,

dF = -K(rsp) [p(e)'ﬁ* + t(e)’f*] ds.

The total solar radiation force over the whole area S is then

F - -K(rsp)fﬁp(e)m + t(0)T*] ds,
S

where

p(e) = (1 + BY) COSZG +3§X(1 — B) cos @
t(6) = (1 - BY) sin @ cos 6.

JPL Technical Memorandum 33.494
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12

The element of surface dS is given by Eq. (14), and the choice of the

projection of the area S on the coordinate planes, over which the double

integration should be performed, is completely arbitrary. One should

choose, of course, the coordinate plane in which the projection of the area

S is the simplest geometrical figure which renders the technically simplest

integration procedure.

Replacing, in Eq. (18), vector T* by its value in Eq. (15), we give

the expression for the total radiation force the following form

- —. . t{8) —
= o L J S 5.2 S
F K [B(G)N + sineu]ds
S

where

B(6) = p(e) - t(6) cot 6, K = K(rSP).

Using the notation

2Y
CI:T(I‘ﬁ)
C, =1 -pY
C,y = BY

we can write the function B(8) in the form

B(8) = Cl cos 6 + ZC3 cosze,

and the radiation force becomes

= =K B(6) d§"KC2Ti cos 6 dS

|

(20)

(21)

(22)

JPL Technica! Memorandum 33-494



where

dS = T ds.

The second integral in Eg. (22), because of

becomes

cos 6 dS = (@ -N%)dS = u - d

2
"

el
2]

S S S

Denote by Ayz’ sz, Axy the projections of the total illuminated areca
on the coordinate planes. Subsequently,

S = Ayzel * szeZ + Axye3'

If @ is the angle between the direction of the incident Sun ray, defined by the

unit vector u, and the z-axis of the system, then
u=e251na+e3cosa (2°)

and

el
2]

= A sinae+ A__ cos a. (24)
Xz Xy

The total radiation force is then

F = -K}J|B(e) dS -KCZ(Axz sin a + Axy cos alu (25)

S

-

JPL Technical Memorandum 33.-494
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14

where, from Eq. (21)

B(e) = 5= - ) [1- B+ 3p@ - W), (26)
and also where
=, _ rad® _ V¢ _V®
N*-é?aa—ﬁw—‘vr W (27)

since ®(x, y, z) = 0 is the equation of the illuminated surface area and
W = V3|

Incidentally, for a black body, y = 0, =0, C, = 1, and the radiation
force (Eq. 25), is given by

F = -K(A. sina+ A cos a)u. (28)
Xz Xy

The first integral in Eq. (25) in the form

B(6) dS,
S
may e hard to evaluate since all three projections of the area S do not
necessarily have to be simple geometric figures. Therefore, as was

mentioned before, the best method for the practical evaluation of the double

integral in Eq. (25) would be to use it in the form

,'

j B(e)N* dS

JPL Technical Memorandum 33-494



and to choose dS from one of the three expressions given by Eq. (14). Hence
we can adopt for the total form of the total radiation pressure, the following

expression:

r =-.«’-3_Yxﬁ[1-p+3p@—'ww]<ﬂ_v-v§_¢>ms
S

- (1 - ﬁY)K(E'TV—‘—’)(AXZ sinat A cos a)a (29)

where, from Eq. (14),

or

ds = Y 4y dz = M daxdz = —_dx dy. (30)
ETR
LB oY kR

In the practical application of Eq. (29), one should be aware of the fact
that the normal to the surface, defined by the unit vector N*, bisects the
angle between the incident and the reflected solar rays so that 0 < @ < -12-7-,

and, therefore,

or

V®&.u >0,

JPL Technical Memorandum 33-494
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Hence, the direction of V& should be chosen in such a manner that the
inequality above is aiways satisfied. At the end of this section, it should be

noted that from cos 8 = u + N* and Eq. (27),

co - [[88)em o (38 on 257 (2 28]

JP1, Technical Memorandum 33-494
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1IVv. MOMENT OF THE SOLAR RADIATION FORCE

The same considerations used in the preceding section can be extended
to the problem of finding the moment of the solar radiation force via a double
integration over the illuminated surface S. The elementary moment of the
force dF, acting upon the elementary surface area dS, is given by

dM = rxd

where T is the position vector of the point A (Fig. 3) in the system of

reference xyz. From the expression for the elementary force in the form

dF = -K [B(e)i\?* + CZE cos 9] ds
we find that

dM = -K [B(e)(Fx N*) + cz(? X u) cos e] ds,

so that the total moment of the solar radiation force over the area S is

™M = -K J[B(e)(’r‘ x dS) + KCZE X T cos 6 dS

S S

or

Z|

-K B(0)(r x dS) + Kczﬁ X T(u - dS).

18 JPL Technical Memorandum 33-494



Finally, setting

we obtain

T - 2_3YK /:]r[l _B+ 3{3(; 'WVQ)]‘E' XQ)(VQX T) ds
o w
S

+ (1 - BY)KT X ?i‘-l-—'wvi’lds. (31)
S

The unit vector u is directed toward the Sun. Denoting the heliocentric

position vector of the spacecraft (Sun-Probe vector) by ;SP as before, we

have

sp

(32)
'sp

u ==

Equation (31) is the final form of the expression for the moment of the solar
radiation force. The quantity A is, as before, the projection of the illumi-

nated surface area on the xy coordinate plane.

Before moving to the next section, in which we shall proceed with the
integration of Eqs. (29) and (31) for the spacecraft components, we must
mention that the reflection does not strictly obey Lambert's law for some
materials and, therefore, the function f(6) should be determined in such a
manner that it represents the actual response of a certain material to
reflection. The parameter B(f), mentioned beforehand, can then be com-

puted using £(0) for that particular material.

Another factor, which can also contribute an extra force of small

magnitude, is the reradiation of the thermal energy. In Ref. 4 the author

JPL Technical Memorandum 33-494
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suggests an alternative expression for Eq. (8), which accounts for the

above-mentioned effects. The expression is

Py = Fy {(1+8Y) cose + B(f) [(1 - B)Y + k(I - v)] cosez

where FN is given by Eq. (1) and where the parameter k depends on the
temperatures and emissivities of the front and back sides of the reflecting
surface and on the absorbed and conducted flux. For adiabatic surfaces,

k = 1.

It is obvious that with the expression above for PN’ the function B(6)
in Eqs. (29) and (31) will have a somewhat different form. Namely, because

in this case p(0) is given by
P(O) = (1+BY) cos’® + B(D) [(1 - BV + k(1 - V) cos e,
while t(9) remains unchanged, and
B(6) = p(6) - t(€) cot B,
we find that
Bl(B) = 2BY cosze + B(f) [(1 - B)Y + k(1 - Y)J cos 0.
Hence, we see that, using the notation

c:'1 = B(f) [(1 - B)Y + k(1 - v)],

we can write the function B(8) in the form

] €os 0+ 2pY cosze.

Bl(e) = C

JPL Technical Memorandum 33-494
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Comparison of this expression with B(8) given by Eq. (21) indicates
that Bl(e) and B(6) are one and the same function of 8, differing only in the

value of the constant Cl' This difference is

c'1 -C, = [B(f) - %] Y(1 - B) + kB(f)(1 - Y).

JPL Technical Memorandum 33-49%4
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V. THE SOLAR RADIATION FORCE ON THE REFLECTING SURFACE
OF A PARABOLIC ANTENNA REFLECTOR

The high-gain antenna of the Pioneer spacecraft has the shape of a
paraboloid of revolution, with its axis of symmetry presumably pointing toward
the Earth. The configuration of the spacecraft and the position of the antenna
reflector relative to the other components is shown on Fig. 4. A simplified
sketch of the reflector only is given on Fig. 5., displaying the dimensions of
the dish: the semidiameter 6 and the depth &.

Since the double integration, indicated in Eq. (29), constitutes the major
technical difficulty in the derivation of the expression for the solar radiation
force, it is a matter of utmost importance that the coordinate system, with
respect to which the integration should be performed, be properly and ade-

quately chosen.

The most suitable frame of reference, which would be most objective
for the purpose of the double integration, provided that the roll-axis of sym-
metry of the spacecraft coincides with the spacecraft — Earth direction, can
be defined in the following manner. Taking the z'-axis along the spacecraft —

Earth direction, we find that the unit vector of the z'-axis is given by

where TEp is the geocentric position vector of the spacecraft and Tep T
ITEPI
The y'-axis of this system lies in the plane defined by the unit vector

k and the unit vector @, defined by Eq. (32). The x'-axis is perpendicular to

this plane; hence

et

and

JPL Technical Memorandum 33-494



Denote by a, the angle between the positive direction of the z'-axis and the

direction of the unit vector @ (Earth-Probe-Sun angle). Then

[@ x k| = sin .

Taking the expression for W from Eq. (32), we can write explicitly

~ 'spX 'ep _ Tsp EP
1=+ 7 sina,. | X 7T
SP'EP o I"'sp* TEpPI
7. Tep X (Fgp X T5p)
= ) -
rEPrSP sSiln Q’O

This frame of reference is noninertial since the two vectors FSP and ?EP

vary with time.

With the introduction of the heliocentric position vector of the Earth,

Rp = Tgp - Tgp
whence
TEp - Tsp - R

=)
|

= |
|1}

= 2, 2 -1/2
(RE - ?)[r + RE - ZrRE cos n.p]

JPL Technical Memorandum 33.494



where T = Tgpr T = |
(Earth-Sun-Probe angle).

?|, and ¢ is the angle between the vectors T and §E

Denote by 7, 3,, 3, the unit vectors of direction of coordinate axes of
an inertial reference frame (for example, the 1950 equatorial coordinate sys-
tem), and let X, Y, Z, and XE, YE’ ZE be the components of vectors T and
Rg

rotation of the above-described rotating frame relative to the inertial equa-

respectively. The instantaneous angular velocity vector w, defining the

torial frame of reference, is then

o Y x a7 x s x )
w_z(lxdt+]xdt+kxdt

The unit vectors of the noninertial system of reference can easily be
expressed in terms of the coordinates of the spacecraft and the Earth and

their derivatives in the inertial frame. Thus

El EZ 33
i-= 1 X Y z
"rREsmq; E E E
X Y A
T=kxi
XE-X
- 1
k-—; YE-Y
-ZE-Z.J

JPL Technical Memorandum 33-494



where

(X-X)2+/ ) )2 ) 2]1/2
[ E \Y Yp) +(Z-2g)

p =
1/2
r = (X2+Y2+Z2)
1/2
2 2 2
Rg = (XE+YE+ZE>

XXE + YYE + ZZE
cos ¥ .
rRE

However, due to the existence of torques, the axis of symmetry of the
reflector moves relative to the above-described system of coordinates,
defined by unit vectors i, .j-, k. Therefore, for the computation of the radia-
tion force from Eq. (29), by double integration, we can establish another

coordinate system, defined in the following manner:

(1) The z-axis is taken along the axis of symmetry of the reflector.

The unit vector of this axis is 33.

(2) The y-axis, defined by the unit vector EZ, lies in the plane of

vectors 33 and u.

(3) The x-axis is perpendicular to the yz-plane, forming a right-
hand-oriented triad with the first two axes. Its unit vector will

be denoted by El. Therefore,

_ 1;1)(33
e - e————
1 sin a
v - = - !
t-':2 = e3x e1

where a = X(T, 33), namely, the angle between the z-axis and the direction
of the incoming radiation. The xyz-coordinate system described above is

shown on Figs. 5 and 6.

JPL Technical Memorandum 33-494
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The geometry of the parabolic reflector is shown on Fig. 6. Placiig
the origin of the above-described coordinate system at the vertex of ihe

paraboloid, we can write for the equation of the reflecting surface

o(x,v,2) = z - X(xz +y“)ym 0 (33)
where M\ is the parameter

L
62

A==, (34)

depending on the dimensions of the reflector only. For the Pioneer F/G

spacecraft, we have, approximately,
P p y

A = 0,202 met:ers"1

The magnitude of the illuminated inside area of the reflector is a func-
tion of the angle @. For small values of a, the whole area is illuminated and
the projection of this area on the xy-plane is a circle of radius 6. When the
solar ray passing through the point A on the brim of the reflector dish (Fig.
6) becomes tangent to the surface, the tangent line cuts off the segment { on

the negative z-axis, so that

a = 90° -Q
where
tan Q = -Zé—é (35)
or
tan Q@ = 2 tan ¢, (36)
where
tan = _(g_ (37)

The two angles, 2 and y, are shown on Fig. 5.
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If «a > 90° - 2, one part of the inside area of the reflector will be
in the shade, and the projection area in the xy-plane will not be the full area
of a circle, but a somewhat more complicated figure. To find this figure,
let us start with the equation of a solar ray passing through any point (xo,

Yor Zg = {) on the brim of the dish:

X-Xg Y-Y9 z.¢

0 " sina ~ cos «a
where
2.2 2
x0+y0—6 .

Take Yo = dw, where w is a parameter. Then, in ierms of w, the equations

above vield

x =6V]_w

wb+tsina (38)

<
n

L +tcosa.

N
1

/

These equations represent, in the parametric form, the equation of the
inclined elliptic cylinder, shown on Fig. 6. The semimajor axis of this
cylind. _ is 6, and its semiminor axis is 6 cos @. The line of intersection of

this cylinder with the paraboloid of revolution
z = )\(x‘2 + yz)
occurs for the values of t which are the solutions of the quadratic equation

(N sirxzoz)t:2 + (2\6w sin ¢ - cos a)t + ()\62 -%)y=o0. (39)
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However, from Eq. (34), A% - £% = 0, and the soluticns of Eq. (39)

are

- 1 (cot a

2 * sina\ % - 2"“")'

Fort, = 0, we have

1

y:éw

and, eliminating the parameter w, we obtain the equation of the circle

Xz + YZ = 62.
For
)
) = sina(cot:oz coty - Zw) ,

we obtain the equation of the line of intersection in the parametric form,

x = & l-W2

8(cot @ cot Y - w) (40)

~
i

N
{]

) tan\p[(l - w?') + (cot a cot Y - W)Z] J

The projection of the curve given by Eq. (40) on the xy-plane is given

in the parametric form by

x = 641 -w

6(cot @ coty - w).

<
1}
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Eliminating w, we find

x + (y - yc)2 - 52 , (41)

where

Yo = S5 cotacoty. (42)
The two circles intercept if 0 < Ye < 26 or, in other words, if

0 < cotacoty < 2,

or
0 <cota < 2tany = tan Q .
or if

90° - 2 < a < 90°.

For a < 90° - Q, the whole inside area of the reflector is illuminated.

For a = 90°, the whole area is in the shade. The y-coord:nate of the
point B (Fig. 6) is

YR = Yo - 6§ = 8(cot acot y - 1), (43)

and the two circles intercept in the points with coordinates

*%\/4 - cot2 a cot2 17

xs

n

)
Ys -z-cotacotcp.

The shaded area on Fig. 7 represents the projection of the illuminated

inside area of the reflector on the xy-plane. The angle ¢ 0 is given by

Ys 1 A
z'n¢°=?=§cotacot¢='i-= cot a cot Q
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where

A0 = cot a coty = 2 sin ¢0 . (45)

With this denotation, the equations of the two circles, given by x% + y2 - 5%

and Eq. (41), are

(46)

I
o
>

v 0* 67 - x

y = 6(Ao - w)
(47)

z = L[(l - wz) + (A, - w)z]

2
= L(l + Ao - ZAOW) . /
The projection of this curve on the xz-plane is, in the parametric form,

x = 641 -w

N
1]

2 - 2a%)
é(l + AO - ZAow s

and, after the elimination of the parameter w, we obtain the ellipse

2A
z = L[l + A - —6'0‘/62 . xz]
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or

z=§(1+Ag)-Zcota 62—x2,

or
22

2 [z-§(1+A0
&) e < (4

The projection of the same line on the yz-plane is, in parametric form,

Y=0(Ao'w)
z=§’1+A2-2A
0 oW,

and, after the elimination of the parameter w, we obtain the equation of the

straight line

z = 2y cota+§(1 - A(Z)) . (49)
For z = &, we get
6A0
y= 2 =Yg

and for the point of intersection with the parabola z = )\yz {(point B), from

)syz-Zycota-g(l-Ag)= 0

we find

y=6(A0'1)=YB9

which is the value already obtained in Eq. (43).
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The projections defined by Eqs. (48) and (49) are shown on Fig. 8 and
Fig. 9, respectively.

From the equation of the reflecting surface, we find

¢(x,y,2) = z - Mx2+y2) =0,

which yields

Ve = -2\xE, - 2\yE, t €, (50)
and
W = |ve| = \/1 + 4x2(x2 + yz) , (51)
so that
Nt = (-20xF) - 2hyE, + §,) . (52)
From
cos ® = N* « U
where U is given by Eq. (23), we find
cos g = S98 2= vzv)‘y sin o (53)

where 0 is the angle between the incident solar ray and the normal to the

surface $ at a particular point. Therefore

cos® >0
or

cos a-2\y sina > 0.

This condition is satisfied for

< Sota 6A0 _
73 S Ys

which is correct.
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Returning to Eq. (22), we shall first find the force over the whole area
of the reflector,” when a < 90° - Q, that is, when the entire interior of the

mirror is illuminated. Introducing the polar coordinates

x:fxcosm y=2—1;‘sin¢. dxdy=;r—2drd¢, (54)
A
we can write
cos g = SOS@-T sin ¢ sin a (55)
1+ r2
and
as = | dx dy :I—dLZ@\/1+rZ. (56)
€3 4x
Since
d5 = Nx as = Z9Cdégy
4\
Eq. (22) becomes
_ K KCZ-—
Fz-—f Ve B(6)r dr d¢ - 5 U .\’1+r cos8rdr do .
4\ A 4\ A
Xy Xy
Hence,
F, = _EZ B(6) r% cos ¢ dr dé
4\ ‘A
Xy
(57a)

K 2 . .
Fy = == B(B) r“sin ¢ dr d¢ - KCZI sin o
4\
A
Xy
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-Iiz f B(6)rdr d¢ - KCZI cos o
4\ A

where (57b)

cos 6r dr d¢

:>

with B(0) given by Eq. (21).

The integration of the right-hand sides of the three equations given
above is rather complicated in polar coordinates, particularly when Ve < 6N2,

or when (Fig. 7)

¢0<45,

because the radius vector OS1 (or OSZ) intersects the upper circle on Fig. 7
in two points. The integration is simpler in rectangular coordinates, as will

be shown later.

However, before going deeper into the details of the integration over
the area Axy’ we shall first derive the components of the radiation force
over the whole inside (front) area of the parabolic reflector, when a < 90°
- Q. The projection of this area on the xy-plane is the area of the circle

2 2 52

x +y = , which we shall call Axy' The components of the force of radia-

tion over the whole area will be denoted by

The limits for the integration over the area Agy are: for ¢, 4)1 = 0,

¢2 = 2w, and for r, r, = 0, r, = 2\6 = 2tany = 2 m. Then
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2 2m

KC 2
F0 - —32 (cos a - rsin¢>sinoz)?'r dr cos ¢ do
x 2 2
2\ l+r
0 0
+El T (cosa-rsind)sina)-ﬁ-d—rcosd)dcb
ot J, 1+ 2
(58)
KC 27 r2m 2
0 3 . . 2r dr .
F = — (cos a - r sin ¢ =in a) Zsm¢d¢
yooo2x l+r
0 0
KCI S r2 dr
t—= (cos @ - r sin ¢ sin a) sin ¢ d$ - KC,I sin a
4\ l+r
0 0
(59)
2t r2m
0. 5 ( 0 6 sin @229 o
.- T3 cos a - r sin ina) ——
2\ l1+r
0 0
- F—(—:l o (cos @ - r sin $ sin a)_rir__ d¢ - KC,Icos a
(60)
It is easy to see that, from Eq. (58),
0
F _=0. (61)
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Equations (59) and (60) can be written in the form

Fy = K(C3 21 CIIZZ - CZI sin a)
(62)
0 _
Fz = -K(C3 31 C 32 + CZI cos a)

where, after the integration is performed,

2n 2m 3
1, = -R22 g"’ sin®é db r d; = -16% sin 2a(l + 2 cot® 2 In cos 2),
2\ 0 0 l1+r (63)
2m 2m 2
sin .2 r  d 2 Q
122 = -;—23 sin” ¢ d‘i" \[i_:-_r-z --— sin a tan -—-(2 + sec ),
0 0 r (64)
2w 2m 2T 2m
os2 d S 2 3 d
I . ¢ @ dé rdr  sin_ o sin® ¢ dé r dr
31 2)\2 1+ 2 2)\2 1+ 2
0 0 r 0 0 r

2 .2 2 2
= w67 Isin” a4+ 2 cot” §2(l - 3 cos @) ln cos @

2
- 2811 - 2 cot? @1n cos ) - (1 + 6 cot? 2 In cos ) cos 2a) 69

_cos &
,
1+cosQ

= £o8 g > dé 2n62 cos @

l+r

2w 2m
1:9-:—:\25‘/\ d¢f rdr = 762 cos a . (67)
0 0
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Collecting all terms given by Eqs. (63-67) together, we can write Egs.

(62) in the following form:

Fo = -néZK(f sin o + f, sin Za)
y 1 2

Fo = 62K + + 2
g = T gg t 8 cos a + g, cos 2a

where

AL 1 - cos Q
f] = 9 (- 5)1 + cos (2 t sec @),

£, = ~5B% + 28Y cot® 2 In cos 2,
1 2
g0=-2--(3Ycot @ In cos 2,
_ A, g cos@
g =30 -Piycesw
1 2
gzz-z--pY(l+3cot 2 In cos Q) .

For the Pioneer spacecraft

6 = 1.3716m
{ = 0.3803m
62 = 5.9102 m®
m = tany = 0.277267
¢ = 15%498
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tan 2 = 0.554535
2 = 29012
and
fl = 0.046754Y(1 - B)
fz = 0.5 - 0.371922pY
gp = 0.5 + 0.435961pY
g = 0.622046Y(1 - B)
g, = 0.5+ 0.307883pYy:-

To compute the solar radiation force exerted upon the inside surface
of the reflector using Eq. (22) or Eq. (29), when o\ly one part of the surface
is illuminated, one must select the proper projection of the surface on one

of the coordinate planes which yields the simplest double integration.

From the preceding considerations, it follows that the projcction in
the yz-plane (Fig. 9) is the simplest geometrical figure composed of a part

of the parabola z = )syz, A'0OB, and the segment BS of the straight line

2

z = 2ycota+§(1-Ao).

Since, from Eq. (14),
ds = g 'dza = Zx dy dz @(d dz .
1 z - )»y

Eq. (22) becomes

KC
- f/N*B(e) 1+"""‘d dz - —2 3 W cos 69y 42 __
"2 W N
2Ayz z - Ay
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where ZAYz is the projection of the surface 'rea S on the yz-plane (the area

projects twice). The enuation above is equivalent to

F=- % [ B(6) —> dydz-—w-u /chosG deZZ.

VZ-KY Z-)‘Y

The component of this force along the x-axis, because of the axial

symmetry of the reflector, vanishes. The other two components are

Hy
"

2K\ ﬁ C cos 9 + ZC cos ) y dy dz - ZJ' sin a
y (——_ NN
z

(74)
KC
. K 2 dy dz 2
Fz— \K,/:[ cose+2C cos 6) -\licosa
A Nz - )\y
where
,‘
J= j (cos @ - 2\y sin o) Sy dz (75)
N 2
vz 2o

Integration of Eqs. (74) and (75) cannot be performed without diffi-
culties taking z = z(y) because for the limit z = )\yz the denominators of
the integrands in Eqs. (74) and (75} vanish. Therefore, the integration
should be performed taking y as a function of z. Thus, the limits for inte-

gration over the part A'BlBS are

yl(z) =

yz(z) - tan a[z - (1 - Ag)é]

|
2.
rd

|
(8]
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Z2

and, for the integration over the remaining part B1 0B, the limits are

yi(z) = - %
yh(z) = |[2
z'1 =0
z‘2 = zp .

Taking cos 6 from Eq. (53), we find

KC
- R S
Fy = ZK\/K(CIJZ1 + ZC3J22) - J sin o
(76)
K KC,
Fz = -:’x(ClJ31 + ZC3J32) - _\/TJ cos a
where
I = cos g X4y dz
21 >
Ayz z - \y
Ty = cos? g Y9y dz
yz = - 2"
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J - cos e__deL

31 }/\ r———-z - kyz

Yz

J32 = cosze—ﬂ—.

L el
Ayz Vz - \y

The evaluation of these four integrals, together with the fifth integral
J with cos 0 taken from Eq. (53), is scmewhat complicated; it is relatively
simple to reduce the double integration to the single integration with constant
limits z; and z,, or z; and z,. However, it may be much simpler and more
suitable to apply directly the numerical double integration procedure with

variable limits.

The integration for 90° - @ < a < 90° can be performed in rectangular
coordinates in the following way. Again taking the projection o1 the illumi-

nated surface of the ieflector on the xy-plane, we can write (see Fig. 7)
Yz(x) Xg Y(x) Y (X)
+
JY (x) -Xg Yl(x) Y (x)
and, because of the symmetry of the reflector with respect to the yz-plane,
] ] 2(x) /’6 Y (x)
Y (x) x Yl(x)

Xg Y(x) /'xs Y (x)

and

Yl(x) .]0 Yl(x)
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so that
) 2 f f ' f f .
Axy 0 Y1 &) Xg Y1 (x)

In order to avoid the double integration, an approximative method can
be introduced. The method is based on the assumption that the ratio of the
components of the force over the illuminated area and the components of the
force over the whole inside area of the reflector are the same as the ratios

of the respective projection areas. Namely, we can assume that

0
F = n(o)F
y = M ) v
(77)
_ 0
F_ = n(e)F,
where, from Fig. 7,
(@) = Projection of the illuminated surface
n - Area of the circle :
Explicitly, this ratio is
2¢, + sin 2¢
nla) = —4 2, (78)
mw
where ¢0 is a function of the angle a, defined by
sin ¢0 = %cot Y cota = cot RLcota. (79)

For the Pioneer spacecraft, ¢ = 15%498 and

sin ¢0 = 1.803 cot e .

JPL Technical Memorandum 33-494



Fora = 90° - €, when the whole inside area of the reflector is

1, ¢g = n/2 and nla) = 1. Therefore,

sin ¢

l 3 [ o
(26, +sin 2¢,),  for 90° - Q@ < a < 90

n(a) =
1, for a < 90° - Q.

The graph of this function is shown on Fig. 10.
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REFLECTOR

CENTER OF GRAVITY

Fig. 5. High-gain antenna reflector of the Pioneer spacecraft
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Solar radiation on the concave sice of the parabolic reflector
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Fig. 7. Projection of the illuminated inside area of the
reflector on the xy~plane of reference
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Fig. 8. Projection of the illuminated inside area of the

reflector on the xz-plane
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Fig. 9. Projection of the illumirated inside area of the
refle~to: on the yz-plane
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Fig. 10, Graph of the blocking function for the
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Vl. THE MOMENT OF THE SOLAR RADIATION FORCE ON THE
REFLECTING SURFACE OF THE PARABOLIC REFLECTOR

Equation (31) gives the final form of the expression for the moment of

the solar radiation force over a surface area S. For the inside area of the

parabolic reflector,

- = - = dx d — -
T XdS = ¥ X Nx* "ﬁ-*—_—}e'_—?’l = (Yel—xez)(1+2)\z)dXdY

uxr-= El(zsina-ycosa)+€2 xcosa-é'3 x sin «a

and the three components of the moment vector M are

M_ = -K yB(O)(1 + 2Az) dx dy + KC, W(z sin @ - y cos @) cos 6 dx dy
A A
Xy xy
MY = K xB(8)(1 + 2Az) dx dy + KC2 cos «a xW cos 6 dx dy
A (80)
Xy Xy
M, = —KC2 sin a xW cos 6 dx dy.

z
A /
Xy

To integrate over the whole inside area of the reflector, we must sub-
stitute B(0) from Eq. (21) and cos ® from Eq. (55) and use the polar coordinates
defined by Eq. (54). Also, because of z = r2/4)\,

2+r2

1+ 2z = >
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and
W = V1+r2-

Since cos 0 contains sin ¢ only, and B(6) is a function of cos © only, all
integrals containing x = (r/2\) cos ¢ (the two integrals in MY and one in Mz)

vanish when integrated trom ¢ = 0to ¢ = 2m because

2mr2m
R(r)F(sin ¢) cos ¢ dr dd =

0/r=0

: herefore,

M- = M = 0. (81)
y z
The M}(: component has the form
C em f2m g 2
MO = .ﬁ—z -—;l-s]_n o d¢ r_(z.il_Ldr
X 166 2

0 0 1+r

2 +
+ Gy sin2a d¢ r( r)d
1+r
2m 2m
+Czsin2af d<bj
0 0
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or, after the integration,

nKC

o

;’ sina (4 + secSQ - 5sec Q)

g

X 80n

+—§-sin2a(sec 2 -1+41ncos Q)
32\

mTKC
+

3 sin 2a tan4§2.
32X\

Finally, substituting A = (tan v)/§, we find

o

M = na?‘gK(hl sin @ + h, sin 2a) (82)
where

h. = %(1 - B) cot4$'2(4 + sech - 5 sec Q)

(83)

h2 = -é—[l + 2BY cot4Q (tanZQ + 2 1n cos Qﬂ .

For the Pioneer spacecraft, these values are

o nt
n

0.334912Y(! - B)

=3
]

0.5+ 0.416502p

and

1762§, = 2.2477m".
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For 90° - Q <« o < 90°, when one part of the inside area of the reflector
p

is in the shzedow,

_ 0
Mx—r](af)l\dx
M. =0

Y
M =20

where the ""blocking function' rn(a) was given in Eq. (78).

JPL Technical Memorandum 33-494

(84)

53



54

VIiI. THE SOLAR RADIATION FORCE ON THE BACK SIDE
OF THE PARABOLIC REFLECTOR

Assuming that the thickness of the reflector is negligible, we can write

the equation of the outside surface in the form

q>;z-k(x2+y2)=0.

The normal to this surface is now pointing outwards, i.e., the grad ¢ is now

given by

grad ¢ = kail + ZXyEZ - 33 (85)

and the unit normal vector N* is

(2AxE, + 2AyE, - &) (86)

1
X =
N* = %

where W is given by Eq. (51).

The geometry of the outside (back side) area of the reflector is shown
on Fig. 11. The curve which separates the illuminated part of the surface
from the part in the shadow is the locus of points at which the solar rays are

tangential to the surface of the paraboloid. If
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is the equation of a solar ray parallel to the unit vector U, the interception
of this straight line and the surface of the paraboloid is defined by the

following s>t of equations:

Y =¥, +tsina
(87)

N
1]

z0+tcosa

N
]

AxZ + y2).

Here we have four equations with four parameters: Xgs Yor Zq° and t.

To be able to eliminate them we must introduce the condition that the straight

2

line is tangent to the surface z = A(x~ + yz). Thus we have

2 - 2
zq + tcos a = )\[xo + (yo +t sma)]
or
.2 2 - 2 2
(A sin” o)t + (ZXyO sina - cos a)t + [x(xo + yo)- ZO] =0,

a quadratic equation in t which, due to the condition that the straight line

has to be tangent to the paraboloid, has to have equal roots, t) = t,. Since

cos a - Zhyo sin a t\kcos a - Zkyo sin a)z - 4\ sin2 a[)\(x(z) + Y(Z)) - z(;l

t = )
1/2 2\ sinZ o

we have

cos a - ZXyO sin o

2\ sin2 a
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and

(cos a - 2).y0 sin or)2 = 4\ sin2 a[)\(x(z) + y(Z)) - zo] . (88)

The substitution of the above-given value for t into the second of Eqs. (87)

yields
6A
cot 6 0
y:Z_Xg :ECOtLPCOta: 2 :YS’ (89)

i.e., the value previously given by the second of Eqs. (44). This equation
shows that the limit of the shadow is a plane curve, contained in a plane
parallel to the z-axis, which projects in the xy-plane as the part of a straight
line parallel to the x-axis. From the first and third of Eqs. (87) and from
Eq. (88) we can derive the equation of the limiting curve in the xz-plane,

eliminating X and zg- Setting y = Yg» We find that the curve is the parabola

y

z = )\xZ+TSCOta ,

i.e., the parabola z = sz (projection of the reflector on the xz-plane) moved
transiationally upward. The projection of the illuminated surface area of the

reflector is shown on Fig. 12.

The gradient of the outside surface of the reflector is pointed outwards;
in other words, its direction is opposite to the direction of the gradient of the

inside surface of the reflector. Thus, from Eq. (85),

Ve = 2\xE, + 2\yE

1 2" €3 »

and, from Eq. (86),

S. . L _ _
N* = W(Z)\xe1 + 2)\ye2 - e3) R
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where W was given by Eq. (51). The cosine of the angle 6 between the normal

to the surface ¢ and the direction of the incoming radiatioa is then

cosO:’ﬁ.N‘*znySin‘t;’-cosa. (90)

From: what was previously said, we orient the normal to the surface in

such a manner that the angle 0 lies in the first quadrant; i.e., so that
cos® =u « N* >0.

This condition yields
2Ny sina-cosa > 0.

For 90° < a < 180°, y >0, sina > 0, - cos ¢ > 0, and the condition is

always satisfied. For 90° - Q < a < 90°, the inequality above yields

the constraint

which is always satisfied for the illuminated portion of the back surface of the

reflector.

The solar radiation force on the back surface can be found in the same
way as was done for the front side of the reflector. For 90° - < a <
90° + 2, one part of the outside surface is illuminated, while for 90° +
Q< a < 180°, the whole back side is lit by solar rays. The force over the
whole area can be obtained from the corresponding expressions for the front
side of the reflector if we note that cos 6 frorn Eq. (90) is the negative of the

expression for cos 0 used for the front side, given by Eq. (53). Thus, denoting
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by a prime the integrals corresponding to integrals 121, 122, 131, 132 and I

for the front surface, we find

L=
L2 = -1
I3 = Iy (91)
I, = -1
1'=1,
and the co.nponents of the solar radiation force will be
1
F 0. 0
X
'0 .
FY = K(-C3I21 + C]‘I22 - CZI sin @) (92)
'0
Fz = K(C3I31 - CII32 - CZI cos a)

where 121, IZZ’ 131, 132, and I are given by Eqs. (63), (64), (65), (66), and
(67), respectively.

Equations corresponding to Eqs. (68) for the front side are then

'0 2 o v
F =~ = -n6"K|f, sin o t+ {, sin 2«
y 1 2
(93)
lO 62 1 ! 1
Fz = -7 K(go + g cos a + g, cos Za)
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where

f'l = f1
] -
fZ = -f2
gg = -8 (94)
gy * 8
g5 = -8,
so that
L
FO- —TrézK(fl sina - f sinZa)
Yy 2
(95)
Fo - wéZK( + o
. = " ‘-go gy cos@ - g, cos 2«
where fl’ fz, gy By and g, are given by Eqs. (69), (70), (71), (72), and
(73), respectively.
Introducing again the ratio
(a) = Projection of the illuminated area
51 - Area of the circle
we find, for 90° < a < 90° + €, from Fig. 12,
2¢, + sin 2¢
1 0 0
nyle) = 7(1 - ™ ) (96)
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so that the total force on the illuminated portion of the back side is

approximately
F' = a)F' 0
y = M@F
(97)
- 1 0
K, = nl(a)Fz
where
1 2¢0+sin 2¢0
s\1-——— for 90° - Q@ < @ < 90° +Q
nl(a) =

1 for 90° < « < 180°.

The graph of this function, for the Pioneer Spacecraft, is shown on Fig. 13.

From Eqs. (78) and (96) we can also write
@ = 31 - ne@] g
(@) =35 M . (98)

This method, however, does not give as good results as in the case of the
front side of the reflector and can possibly be used only for the values of o
which are not too far below the value @ = 90° + Q2. For example, taking

a = 90° and assuming black body structure of the back side of the reflector

we find F'Y = F'z = 0, which is not true. Therefore, the components of the
radiation force in the whole interval 90° - 2 < < 90° + Q should be determined

by the double integrations over the area of projection Ax ?

F!' =0,
X

F) = -—Iiz-f B(6)r® sin ¢ dr d¢ - KC,Isina ,
A
X

F o= 55 /B(B)r dr d¢ - KC,I cos @,
A
X
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where B(8) is given by Eq. (21), cos 6 is given by Eq. (90), and

I=-——12 le+r2coserdrd¢-
4\
A
xy

The integration is simpler than in the case of the front side of the reflector

because the projection of the illuminated area is the segment of the circle

x2 + yz = 62. The integration limits are

For ¢: ¢=¢0to¢=rr-d>0

sin ¢

For r: r=2m tor=2m,

sind

where ¢ is given by Eq. (90).
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> n

Fig. 11,

DIRECTION OF INCIDENT
SUN RAYS

Solar radiation oun the convex side of the

parabolic reflector
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PROJECTION OF THE
ILLUMINED AREA

PROJECTION OF THE
SHADED AREA

Fig. 12, Projection of the illuminated outside area of the
reflector on the xy-plane of reference
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Fig. 13, Graph of the blocking function for the convex side of the
parabolic reflector
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VIII. THE MOMENT OF THE SOLAR RADIATION FORCE ON THE
BACK SIDE OF THE PARABOLIC REFLECTOR

In the same manner as for the inside area of the reflector, we can

prove that

M’ =M’=0.
z
Since, for the back side,
TXdS = T x N* -_dﬂil._ = -(yz - xe )J(1 + 2Az) dx dy,
|N* . e3, 1 2

and

uxr = El(z sin @ - y cos a) +¢—32x cos a - ‘e.3x sin a,

the expression for the moment, given by Eq. (31), becomes (note that for the

back side r X dS is the negative of the corresponding value for the front side)

K yB(6)(1 + 2Az) dx dy + KC2 W(z sin @ - y cos a) cos 6 dx dy,
A
Xy Xy

and, since cos 6 has the opposite sign of the same expression for the front

side of the reflector, integrating over the whole area of the circle, we find
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U 3 2
M0 - _K —El-sina dé rr@+r),,

x 3 s
Teh 0 0 l-l-r2

- G, sin 2a dé "(2“”’(1
l+r
2 2m
-C2 sin Zaf d¢f r3 dr |,
0 0

or
0 2 . .
M" = md t’,K(hl sin a - h2 sin 2a) (99)

X

where h1 and h2 are given by Eqs. (83)
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IX. TOTAL SOLAR RADIATION FORCE AND TORQUE ON BOTH SIDES OF
THE PARABOLIC REFLECTOR: RECAPITULATION OF FORMULAS

In the general case, the reflectivity characteristics of the front and
back sides of the parabolic antenna reflector are different. We shall denote
by [3F, Yg the values of  and y for the front side, and by BB, Yg the values

of the same quantities for the back side of the reflector. Also, set
By = 1 (100)

so that

g = PpYp
(101)

kg = Pg¥p)

Let us compute first, for given values of 6 and L

2 = arctan (365)

and the constants of the reflector

a, = cotZan cos 2 \
_21l-cos @
a, =391+ co Q(2+sec9) #
_ 4 _cosQ
23 31 tcos
(102)
2 3
_ 2 1+2cosf2+3cos Q+4cos D
Py = 15 2
cos (1 + cos Q)
_ 2
bz-cot Q.
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Then

for the front side, and
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]

1
3 - {1+ 3.31)}4F

1
-2'- + albzp-F

1
3 - {1 +3a1)nB

1'B

]
=7 tabug

(104)
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for the back side of the reflector, where

r T YF T PR

(105)

v

B - Y~ MB.

The components of the solar radiation force and torque are schematically

shown on Fig. 14, ror different intervals of the angle a between 0 and 180 deg.

If we redefine the functions n(a) and nl(c') in the following manner
1, for 0° < @ < 90° - Q
1 .
ma) = 7 (26, + sin 2¢0), for 90° -Q < o < 90°

0, for 90° < a =<180°

we can write, for the components of the solar radiation force and torque, the

following expressions:

T 0 '
F~ o= a)F + I'F
y n(a) y y
T 0 '
Fz = Y](Q)Fz + FFZ (106)
T _ 0 '
Mx = q(a)Mx + FMx

where
Ofor0°< a2 90° -Q

1 for 90° - Q2 < a < 180°

JPL Technical Memorandum 33-494



and where, from Eqs. (68), (82), (95), (99), (103), and (104),

Fo = -1r62 K (fF sin o + fF sin Za)
y 1 2
0 2 F F F
Fz = -m6 K (go tg; cosatg, cos 20)
t
Fyo= -1'r62 K (le sin @ + f? sir ZQ) (107)
F'zo = -1r62 K (-g(])3 t gy cos a- g? cos 20)
M0 = véZLK hF sin a'+hF sin 2«
X 1 2
1
MO - 762 K (b8 sin o - B sin 2¢).
x 1 2

Figure 14 shows the values of the components of the solar radiation
force and moment for different values of angle o, as well as the values of

the total force on both sides of the parabolic reflector.

Equations (106), together with Eqs. (103), (104), and (107), represent

the final form of the solution.
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(o) FORCES AND TORQUES ON FRONT AND BACK SIDES

FRONT SIDE BACK SIDE FRONT | BACK
¢ F F F G M M
x y z y z x x
Y 0
[0°, 90° - @] o | W R o | o | M | o
o 7 /7 ’
(90° - Q, 90°) o | F, | F Bl Rl oM | oM
o 4 ' /
190°, 90° + Q) o | o 0 R A M
o /0 /0 70
(90°+Q,180°] | o | o 0 BolF 0 W,
() TOTAL FORCE AND TORQUE
e F F, F, M,
0
[0°, 90° - Q] 0 e ¥ MO
4 /
(90° - &2, 90°) 0 Fy+FY F +F, M, + M

" ’ ’ ’

[90°, 90° + Q) 0 F F, ¢

[90° + Q, 180°] 0 ¢° ¢/0 0

Y z x

Fig. 14. Table of the total radiation force and torques
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X. COMPARISON WITH THE FLAT-SURFACE MODEL

The so-called "effective area' of the illumination in the flat surface
model is the projection of the illuminated area on the plane perpendicular to
the direction of the solar radiation. To simplify the derivations of the flat
model (the model used in Ref. 5) and sti'! be able to find the order of magni-
tude of the deviation of the flat surface model from the real force model, we
shall consider the case when 0 < o = 90° - Q2. We shall also assume that
the values of B and y are the same for both models. Then the components of
the solar radiation force for a flat surface can be derived from Eqgs. (68) by

setting{ = 0. ThenQ = 0 and

fl = O’
1+ By . In cos Q 1 - By
f. = + ZﬁY lim = ’
2 Q*O[ t::m2 Q ] 2
- 1+6y
80 = T2z

so that

Fg (flat) = -n&zK(l - By) sin a cos a,

F(z) (flat) = -1r62K [—Zg-(l - B)cos at (1 +By) cos2 a]-

The differences in the components of the real force and the flat surface

force model are
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0 _ 2,12 1 -cosq .
AFY = -md K[%(l - B)m (2+sec Q)sma
+ By(l + 2 cot® Q1n cos Q) sin 20:]
0 _ 2.2y 1 -cosQ
AFz— 6 K[3 (l'p)1+cos§2 cos a

+EZY' (1 +3 cos 2a)(1 +2 cot? Q1n cos Q)]

For the Pioneer F/G spacecraft, these differences are

AF;), = -HBZK [0. 046754 y(1 - B) sin o + 0.128078 By sin Za]
AF(Z) = TTGZK [0. 044621 y(1 - B) cos a + 0.064039 By(l + 3 cos Za)]

which shows the order of magnitude of the error in the flat surface model.

For example, fora = 0, 8 = y = 1,

AFg = 0.256156 T6°K
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XI. PRINCIPAL AXES OF INERTIA; EULER'S EQUATIONS OF MOTION

In order to derive the equations of motion of the spacecraft under the
action of the solar radiation force, we shall assume that the spacecraft is
rotationally symmetric and that its center of gravity (point C on Fig. 15) lies
on the z-axis. Now define the system of principal axes of inertia Xpr Ypr Zp
of the body in the following manner. Because of symmetry the principal
zp-axis will coincide with the z-axis of one frame of reference and, for the
same reason, the X5 and Yo axes may be chosen arbitrarily. Therefore, to
simplify "he problem, we shall take the xp and Yp axes to be parallel to the

x and y axes respectively. Hence,

X = xp
Y =Yp
z = zp - zco

The components of the moment of the solar radiation force with respect to

the point O, the origin of the system xyz, are

If T is the position vector of a point of the body with respect to O as the
originand T is the position vector of the same point with respect to the

point C as the origin, the relationship between these two vectors is

—(C)=—+ € .
r r ZC e3

The moments of the solar radiation force relative to the points O and C are,

respectively,
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A J[7 x aF
S

©)
MO - [[FCxaF-w™  *2c
S

further on, because Fx = O,

'e-3><-f= -F e

y 1
so that
—(C) — -
M = M. zCFy e,
or, consequently,
MG oM mz F )
X x Cy
M (©) - o > (108)
y
M ©) 4
z
where
X =X
P
Yp =Y
zp =2-zq

are the principal axes.
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The moments of 1nertia of the hollow paraboloid of revolutioa with

respect to the axes of the system xyz are

M
_ _ R 2 2
L =1, =—g- (8% + 319
2
_ Mgs
Iz— 3

where Mp is the mass of the reflector. According to Steiner's theorem, the

principal moments of inertia of the reflector are

2 2
- R - [ 2
v (feg )
(109)

Let Jx’ Jy, Jz be the principal moments of inertia of the rest of the
spacecraft. Then, using Egqs. (108) and (109), we can write Euler's equations

of motion of the whole spacecraft in the form

(A+Jx)¢bx- [(A- C)+(Jy- Jz)] wywz = Mx-zCFy\

a+3) a,y+[(A-C)+(Jx-Jz)]wz w =0 \ (110)

(C+Jz)d:z-(Jx-Jy)wxwy=0 )

Here we assume that the rest of the spacecraft is not illuminated (wx, wy, w,

are components of the angular velocity vector).

For a rotationally symmetric spacecraft, Jx = Jy’ and

1 = n
"z
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so that

A+
o= - 2o
nf(a-C)+@_-3)] 7Y y

w_ = -
X

and the differential equation for wy is

(A +Jy)°
n(A-C+Jx-Jz)

my+n(A-C+Jx-Jz)‘f)y=ZCFY-MX. (111)

The right-hand side of this equation can be written in another form, by means
of the first of Eqs. (68) and Eq. (82), namely

_ 2 . .
zes Fy - Mx = -8 K [(fl zg +§,h1) sin a + (f.2 Ze + th) sin Za]. (112)

From Egs. (69), (70) and the first of Eqs. (83), we can find the values
of f; Ze + §h1 and fz Zs + !.hz in terms of the angle  of the reflector.

From
) _ Ksprp
K=K (rSP) =T
r
using the notation
fyzctthy = 4
fz zo tgh, = 12 (113)
2 =
wd Kep = Cs

we have the right-hand side of Eq. (111) in the form

z¢ Fy -M, = -Cg (ll sin a + £, sin 2a). (114)
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For the Pioneer spacecraft,

21 = Y (1 -8)(0.127367 + 0.046754 zC) meters

-1
£, = 3 (0.3803 +2.) + (0. 158396 - 0.371922 z ;) BY meters
Cg = 6.0444 X 1017 kilogram meter/second?

or, if the heliocentric distance of the spacecraft is given in astronomical
units (AU),

Cg = 2.7008 X 10°° kilogram meter /second?

With a negligible loss of accuracy we can assume that the angle @ is equal to

the Earth-Spacecraft-Sun angle. Therefore,

|? xﬁEl
—

sina =

Using the notation

n(A-C+Jx-Jz)= 9,
a+3)=gq,
we can rewrite Eq. (111) in the form
T(:%E.Sy+qlwy = - %(ll sina+l2 sin 2a)
or
d‘;y+ﬂg wy = -eo(l + e cos f)2 (21 sina+22 sin 2a) (115)
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where

n(A - C+Jy - Jp)

o = A+T
.. Cgn A-C+J, -7,
0 aZq. e?? (A +1 )2
ag = semimajor axis of the spacecraft's orbit in astronomical units

e = the ecceatricity of the spacecraft's orbit
f = true anomaliy of the spacecraft.

The period of free oscillations (without the forcing function) of the rotationally

symmetric spacecraft (J_ = Jy) is given by

A+,

- 2r
TO-n A-C+J -7 (116)
x z

where n is the rate of rotation of the spacecraft about its roll axis.

If there were no other parts of the spacecraft (the reflector only),

N
"
Wi

ol

>

n

wg
P

Q

1

2
w
u|°‘N

>

Q

"

2
G

R
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and
7o - 2 [ive ()],

For the Pioneer spacecraft, the rate of rotation about its roll axis is

5 revolutions/minute, and the period of spinning is thus

T . = 12 seconds,
spin

Therefore,
2
6
s T, [1 ‘6 (g)].

The ratio 6/{ is approximately 3.6, so that

T, = 79T . = 948 seconds = 15.8 minutes.
0 spin

The period of free osciliations about the x-axis is the same. Indeed, setting
the right-hand side of the first of Eqs. (110) equal to zero, we can substitute

w_into the second of Eqs. (110) and obtain again Eq. (115) in the form

w +sz = 0.
X 0 x
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I

o AXIS OF SYMMETRY
OF THE REFLECTOR

|

DIRECTION OF

4=tz SOLAR RAYS
REFLECTOR 33
(o]
z
C -
4 2
—- —» Yp=Y
B ¢ \
CENTER OF GRAVITY
OF THE SPACECRAFT

XP=X

Fig. 15. Orientation of axes of the noninertial
reference frame
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XII. SOLAR RADIATION FORCE IN THE INERTIAL ¥RAME OF REFERENCE

The components of the solar radiation force, given by the first two of
Eqs. (106), are relative to the noninertial frame of reference xyz. The

angular velocity vector of rotation of this system is given by

2% = "i'x-g-i +_Tx%%+?x%%‘- (117)
where
- R.XT
i = ——
[Rg > 7|
j=kx1
- _ P - - =
k--;. P=r-R;
Here,
- R.XT
ixd . _E IZX%(iEx?)

R

Fp-PIx®ox® g _
= - x2[®.-TFIx(®
R <& (R P @pxT]

&8

j x

ixdE . ZEm T (TE g
dt = p2 dt  dt

and the equation of motion of the spacecraft in an inertial frame of reference

is
- E
m

z‘- — .
dr z;xd—;'»,ax(;x?)-;x‘; =
S

where F = ij?+ FZE. and mg is the mass of the spacecraft.
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XIII. SOLAR RADIATION FORCE ON THE SURFACE
OF A CIRCULAR CYLINDER

A spacecraft may carry one or more components of cylindrical shape
such as fuel tanks, instruments, etc. To find the solar radiation force
exerted on the surface of a cylinder of an arbitrary radius in the general
case, we shall assume that the axis of symmetry of the cylinder lies along
an arbitrarily chosen direction, defined by the unit vector 1-11. Let xyz be
the noninertial frame of reference, the axes of which are directed aloag the
unit vectors e_l, €5, F3 of the already described system of conrdirate., trans-
lated into the center of gravity as the origin, and let tne point O be the ~oint
on which the axis of symmetry of the cylinder penetrates the yz-plane of the
above-described coordinate system. Taking O as the origin of another coor-
dinate system of axes x', y', z*' parallel to the axes x, y, and z respectively,

we have, from Fig. 16,

X = X
Y =Y - Y (118)
z":z-z0

where the two quantities Yo and zq, are known. In order to bring the axes of
the system x' y' z' into the position of the system ¢ n ¢, we must perform the

following two rotations:

(1, Rotation about the z'-axis by an angle x, in the positive direction;

this brings the x'-axis into the position OL.

(2) Rotation about the new y-axis by an angle ¢, in the negative direc-

tion. This brings the x'-axis into the position O¢.
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The equations of transformation between the x' y' z' system and £ ¢

system are

i ¢ ] [ cos ¢ 0 sin e | [ cos X sin y o 1[ x'
n = 0 1 0 -sin X cos X 0 y'
_ 4 ] | -sine 0 cose | [ 0 0 1 1L z'__
or
i (3 ] [ cos X COS € sin X cos ¢ sin ¢ | F x' ]
n = -sin x cos X 0 y' (119)
R 1 L "eosx sin € -sin ¥ sin ¢ cose || z' i

The equation of the cylinder in the system gn ¢ is

n +¢ =a. (120)
The components of the unit vector

U=-e,sina+e, cos o
2 3
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in the ¢ng -system are

N . . - -y
f— u, [- CO8 X cO8 € sin X cos ¢ gin e [- 0
u, = -s8in ¥ cos X 0 sin o
uz -cos x sin e -sin X sine¢ cose cos a
L - L 4L
or
u; = sin X cos ¢ sina t+ sin ¢ cos a

cos ¥ sin « (121)

)]

ugy -sin ¥ sin ¢ sin a + cos ¢ cosa

and the equation of the plane parallel to unit vector u and ;1 is

(r - I-'o) . (KxEl) =0

or
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or

u3 (T] - T’]0) - uz (g - go) = 0.
This equation can be written also in the form
u3r]-u2§+p = 0. (122)

Out of infinitely many planes given by Eq. (122), two are tangent to

the surface of the cylinder. Their traces are shown on Fig. i7. The two
lines along which these planes touch the cylinder project a two points. P
and Q, on Fig. 17. These two lines separate the illuminated part of the sur-
face from the part of the surface of the cylinder which remains in the shadow.
The illuminated area projects on the {n-plane as a rectangle of length AB:-h

and width Zqo (Fig. 17), which must be determined in the following way.

Combining the equations of the cylinder (Eq. 120) with the equation of

the plane (Eq. 122), we find the interceprcion of these two surfaces to be given

by

2
n'u—é-f'

3 3
q2+§2:a2

Substitutinug the value of n from the first equation into the second, we obtain the

the quadratic equation for §:

2 2\, 2 2 2 2
(u2+u3)g_, -2pu2g +(p -a u3)=0.

Because of the condition for tangency, the two roots of this equation must be

the same. Hence, we find

b = :!:a.'\/ug+u§ = xa\/1 -uf (123)
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because

2 2 2
u1+u2+u3 = 1.

Therefores, the coordinates of points P and Q are

¢ au,
P,Q°- %
1- ui
and
au
n S
P, Q 2
l-u
V 1
so tkat

M =z —_— (124)

The unit vector of the normal to the surface

- ve v
*® = = —
N v @] w
lies in the N{ - plane. From the equation of the surface

o(€,n,8) = n? 4 2. a% =0

we find

28 _ , 08 _, 3%
ag = 0: an - 2’1,3; *24’
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so that

W= \/am%+ %) = 2a (125)

and

N* = 13, + %‘53. (126)
Also, from cos © = u - N*%, we find
cos 6 = M (127)
a
Taking the coordinate transformation
N = asin ¢
L= acosd
we ~an write, instead of Eq. (127),
cos 0 = u, sin ¢ + Uz cos b. (128)

Since the N-coordinate of the point Q (Fig. 17) is
T Mg = @ sin A
the integration limits for the solar radiation force in Eq. (29) will be

for £ : &£,, &

A A+h

for ¢ : -A, +A,
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where

A = arc sin [-

(129)

The solar radiation force is then given by

A §A+h
F = -K B(e)(ﬁz sin ¢ + ;3 cos ¢)2 ({OS ¢ é iw
¢=-AJE=¢, ny
a cos ¢ df d¢
-KCZ(u n +u n -l—u3 3) cos 6 533 . N"‘l
:-A g
or, because
- — g
ln3 . N*' = ;: = €08 ¢,
A
F = -Kha 13(9)(32 sind + 63 cos ¢) dé
-A
A
-KhC a(u1 1+u n +u n ) cos 6 do {130)
-A

where

B(9) ~ Cl(u2 sin ¢ + u, cos ¢) + 2C3('.12 sin ¢ + uy cos cb)z.
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The components of the solar radiation force, given by Eq. (130), along

the axes of the system £n%, are

A
Fg = -KhaCZul (u2 sind? + u, cos d.>) do
-A
A
%2
F. = -Kha] B(8) siné dé¢+—F
n u, ¢
-A
A uy
F, = -Kha B(6) cos¢ dp + — F, .
g 4 £
-A

Performing the indicated integration, we finally obtain

! “§
Fg = -ZKahCZulu3 sin A = —ZKahCZ-——T (131)
\ /1 - uy
ujy u,
Ff\ = -Kh:alu2 C1 arc sin = - > Clu2
,1 _ l.-u
u1 1
3
8C u u
. 33 3 + 2 F (132)
1. G2 v, &
U3 U3
F, = -Khau,[C., arc sin + C,u
r 31 ™1 = 1“2
1-u -
1
8C3 1- u% + u, uy
+ +— F (133)
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The components of the solar radiation force along the axes of the system

x'y'z' will then be

- n p—

i) cos X cos €
X

F = I sin X cos €
b4

F sin €
z

- sin X

cos X

- cos X sine F§
- sin X sin € F"l (134)
cos € Fg

Since the system x'y'z' is rotating in space, and the spacecraft also spins

about its roll axis, the angle X is a function of time.
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DIRECTION
OF SUN RAYS

Fig. 16, Solar radiation on the curved surface of a
circular cylinder

TRACES OF PLANES
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———— 2

20

Fig. 17, Trace of the projection of the illuminated
area of the cylinder on the xy-plane
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XIV. SPECIAL CASES OF THE SOLAR RADIATION
FORCE ON A CIRCULAR CYLINDER

If the circular cylinder lies in the x'y' plane, ¢ = 0, and, from
Eqs. (121),

sin X sina

[
[
1l

u, = cos X sin a

I

cos a

so that, from Eq. (129),

COoSs «a

\/ . 2 2
l-sin X sin «a

sin A =

From Eq. (131) we can derive

. . 3
sin X sin o cos” «

F§ = -Ka.hC2

. .2
1-sin” X sin «a

and the other two components can be obtained by a simple substitution of the

values of u,, u,, and ujy into Eqs. (132) and (133).

Another interesting case is noted when the axis of symmetry of the
cylinder coincides with the z-axis (axis of symmetry of the reflector). Then,
the £-axis lies along the z-axis, the n-axis coincides with the x-axis, and
the l-axis coincides with the y-axis, so that X = -w/2, and ¢ = 7/2. Assum-
ing that the cylinder hangs behind the surface of the parabolic reflector, we
can take the bottom base of the cylinder as the ni -plane, which yields
Yo = 0, z4 = h. Thus
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u, = 1 0 0 sin a
.u3J | 0 1 0 ] _cosa'.J
or
u; = cosa
u2:0
u3=sina.

Neglecting the shadowing effects of other components of the spacecraft on the

surface of the cylinder, we can write from Eq. (129)
sin A = 1, A = 90°.

Formulas given by Eqs. (131-133) yield

Fg = -Kah(l - By) sin 2«
FT] =0
. 2 .
Fg = -Kah sin a[%l(l - B) +§(3 + By) sin a]
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which leads to the following expressions (F§ = F_, Fq = Fx’ F{, = Fy)‘

Fx =0 )

F_ = -Kah sin a[’”(l -B)+ E(3 + By) sin a] (135)
y E3 3 ?

Fz = -Kah(l - By) sin 2a, y,
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APPENDIX

STOKES' THEOREM; CONVERSION OF DOUBLE
INTEGRALS INTO LINE INTEGRALS

The previously obtained expression for the solar radiation force, given

by Eq. (22), may be written in the form

F = -K //B(e)d§+czEﬂE . dS (A-1)
s S

i. e., as the sum of two double integrals. We have seen earlier that the
second integral in Eq. (A-1) can be solved immediately, since, insofar as
the double integration is concerned, the unit vector u is a constant vector

and, therefore,

£l
[
wn
I
el
[
1451
"
& |
121

(A-2)
The function B(6) in the first double integral in Eq. (A-1) is a function
of x, y, and z. From the equation of the reflecting surface,
®(x,y,z) = 0
we can obtain z as a function of x and y. With the substitution of the value of

z so obtained into the function B(8), it becomes a function of x and y only,

i.e., B(x,y). Thus we have

F = -K /:/B(x,y) d§+c2(a' . Shu (A-3)
S
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Now consider the double integral

r
/ B(x,y) ds. (A-4)
S

Since this integral physically represents one part of the solar radiation force
exerted on the surface of a certain component of a spacecraft, the surface
area S is always bounded by a simple closed curve or, in the general case, a
closed geometrical figure bounded by several parts of different simple

curves. Therefore, we can write the Stokes theorem in the form

dSXv)xv = -Pvxdr, (A-5)

S L

where L is the closed curve, bounding the surface S. The vector v is an

unknown vector function that must be determined from
(dS X ¥) x v = B(x,y)dS. (A-6)

Since, from what we had before,

|
!
4

dS = N*dS = -WdS,
we can rewrite Eq. (A-6) in the form
(Ve X v) x v = B(x,y)Ve. (A-7)

The equation of the surface & having been known, we can consider V® a known

vector,

=Vo

z|
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the components of which are Ni(x,y), i = 1,2,35. The left-hand side of

Eq. (A-7) is a triple cross-product, which can be written as

b sl
(NXV)Xv =V(v N -NV -v) =grad(v - N) - Ndivv (A-8)

where the asterisk abcve the vector N means that the operator V is applied

to vector v only.

Substituting the value of the triple cross-product (N X V) X v from
Eq. (A-8) into Eq. (A-7), we find

b3
grad(;: . N)- Ndivv = B(x,y)_ﬁ

or

s
grad (; . I_\I-) -} N[div v+ B(x,y)] (A-9)

Using components of the vector function v: Vyr vy, and v,, Eq. (A-9) yields

the following three partial differential equations:

ov ov ov ov ov ov 7
1 2 3 1 2 3
Nigx *Noox *N3ox ° Nl[ax tay t e tBxY)
v ov v (v av ov ’ b
1 2 3 1 2 3 )
N oy * N oy * N3 oy N, L 0x * ay et B(x,y)‘ (A-10)
v v v [ov ov v .
1 2 3 1 2 3
Niaz TNy TN35p = N3 L 9x * oy e B(x,y)d

or
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v dz 2 9x 38x
-Nm+N m+?ﬁ+3(x)-Ni"_3-o
179 2| ox 9z Y 33y

ov ov dv ov
1 2 1 2
_Nl ‘a? - NZE. + N3 [a—x- + _};— + B(x, y)] =0

where B(x,y) is a known function of x and y. Since this system is homogeneous

with respect to Nl’ N,, and Nj, the determinant of the system must be zero.

We shall now consider a particular case when the right-hand side of
Fiq. (A-9) is zero; in other words, we shall find a particular vector function

v which makes the right-hand side of the Eq. (A-9) vanish, so that
div v + B(x,y) = 0. (A-11)

Since in this case the right-hand sides of the three scalar equations

(Eqs. A-10) vanish, the Jaccbian J(vl, Vo v3/x,y, z) is equal to zero, i.e.,

vy vy By
ox ox ox
P ASIACTAEY I [ U A B S
\ x,y,z | oy oy dy )
avl avz 8v3
oz oz 9z

This fact implies that the three components of the vector function v are not

independent quantities. Indeed, writing the equation of the reflecting surface
in the explicit form

®(x,y,z) = f(x,y) -z =0
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and, therefore,

TR
Ny = 5%
Y
Nz-a—v>
N3=-l)

We find, from the third of Eqs. (A-10),

-a.(ﬁv + Qf_ - ) =0
9z\dx'1 " By'2 "~ V3 =

and, accordingly,

0 of
B_f{vl + a—y-vz -vy = b(x,y)

or
- of ", .
vy = 5%V1 + ayv2 Y(x,vy). (A-12)
Hence
kT L SO SR T GO Yo S 1
9x szvl dx8y 2 " 9x 8x dy 9x ax
2
vy a2 % Lot L ar®2 gy
ay ~ axoyvit T2V27 8xBy t ayav  av
ay yay y
3.2, a2
9z = 9x 9z 3y 0z
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and, substituting these values into the left-hand sides of the {irst two of

Egs. (A . we find
o, , o o
BXZ 1 3x9y 2 ox
(A-13)
—aziv + iZ—fzv = 3_‘41
oxdy 1 3y 2 oy
Assuming that the determinart of this sysicm does not vanish, i.e., if
o’ 8%
axz x93y
2. 2 2\
9 f o f
_ CEg (8
2 2
ax’ ay Ixay
2% ot
9xay ay2
the two compcarents vy and v, can be determined from
1 [Praw | d% g
V1 © Gix,y) gﬁax 9xdy 9y
(A-14)

1 [y _ 8%tay
V2 7 Gk, y) ;;Zay 9x9dy Ix

Eqgs. (A-14) show that vy and v, are functions of x and y only. Therefore

vy
9z ~ 9z
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and, accordingly,

3v1 8v2
= 7 3y - -B(x,y), (A-15)

so that, differentiating the first equation (Eq. A-14) with respect to x and the
second equation with respect to y, and substituting the results into Eq. (A-15),

we finally arrive at a partial differential equation of the second order tor the
determination of the function ¢ (x, y).

To illustrate this method, we shall consider the equation of the surface
of the paraboloid of revolution

Q(X,Y,Z) = )\(XZ +Y2) -z =0

where

3;( = Zxx,a— = ZXy
2 2 2
af _ 2x,aaaf - o,a—f2 - 2\
ox xy dy
G(x,y) = 4)\2.
Here, from Eqs. (A-14),
_ 1 ay
V1 7 Zx 3x
RERYY]
V2 TTZX o5y
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and Eq. (A-15) yields the Laplace equation in two dimensions:

2 2
ap = &% + 2% - aaB(x,y),
ox ay
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al, 32, 33

a)» 80 33

SRP

xy’ “xz’ Tyz

A(f)

AU

e

el, ez, e3

NOMENCLATURE

semidiameter of the circular cylinder
semin. .jor axis of the spacecraft's orbit
constants oY the parabolic reflector

unit vectors along the axes of the inertial reference
frame

acceleration of the solar radiation force

moment of inertia of the parabolic reflector about
the principal xp- axis of the spacecraft

parameter used in integration

projections of the illuminated surface area on the
three coordinate planes

reflectivity function
astronomical unit
constants of the parabolic reflector

moment of inertia of the reflector about the princi-
pal yp- axis of the spacecraft

function of the angle between the direction of the
incident radiation and normal to the reflecting
surface

reflectivity function

speed of light

modified solar constant

moment of inertia of the parabolic reflector about
the principal zp- axis of the spacecraft

reflectivity characteristics of a specified reflecting
surface

eccentricity of the spacecraft's orbit

unit vectors along the axes of the noninertial irame
of reference xyz

true anomaly cf the spacecraft in its orbit
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1’ L2
F F
f1, £,
B B
f;. £,
£(0)
F
F,F,F
X y z
Fxn
Fy
Fr
Fp
+0
0
O r°, FO
X y z
O 0 g0
X y z
T §T
y Z
Fg, Fpo Fy
o> By B2
F F F
go' g, &

B B T
gy 81 &

constants of the parabolic reflector

values of constants f, and f., for the front side ot
. 1 2
the retlector

-ralues of constants f, and f., for the back side of
1 2
the reflector

reflection law
solar radiation force

components of the solar radiation force along the
axes of the noninertial frame of reference xyz

solar radiation force exerted upon a surface per-
pendicular to the direction of the incoming
radiation

part of the radiation force due to the incoming
radiation

part of the radiation force due to the specularly
reflected radiation

part of the radiation force due tu the diffusely
reflected radiation

solar radiation force exerted on the whole front
surface of the parabolic reflector

components of force fo along the axes of the non-
inertial reference frame xyz

components of t!.e solar radiation force exerted
on the whole back area of the reflector, along the
axes of the noninertial reference frame xyz

components of the total solar radiation force in
the sy-tem xyz

components of the solar radiation force along the
axes of the noninertial system §n¢

constants of the parabolic reflector

values of constants g,, g,, and g, for the front side
0’ °1 2
of the reflector

values of constant g,, g,, and g, for the back side
0’ =1 2
of the reflector
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h length of the circular cylinder

hl’ h2 constanis of the reflector; ccefficients in the
expression for the moment of the radiation force

hF, hF values of constants h, and h. for the front side of

1 2 1 2
the reflector
B ,B .

hl s h2 values of h, and h2 for the back side of the
reflector

i unit vector along the x-axis

I radiant flux per unit solid angle on a hemisphere

I0 constant, having the same dimensions as I

I, 121, 122, 131, I32 definite integrals that appear in the expressions
for the components of the solar radiation force

I, 1,1 moments of inertia of the reflector about the axes

x’ Ty’ Tz .
of the coordinate frame xyz

j unit vector along the y-axis

J radiant energy of the incoming radiation per unit
area per unit of time

J, JZl’ JZZ’ J31, J32 definite integrals that anpear in the expressions
for the components of the solar radiation force

JO solar constant

Jx’ J , Jz principal moments of inertia of the spacecraft

y without the parabolic reflector

k unit vector along the z-axis, in the Spacecraft-
Earth direction

k radiation constant

K= K(rSP) = K(r) function of the heliocentric distance of the
spacecraft

Kl’ KZ’ K3 reflecting characteristics of a surface

KSRP solar radiation constant

Bl, 22 auxiliary constants

m constant of the reflector

mg total mass of the spacecraft
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M mass
M moment of the solar radiation force
Mx’ M , Mz components of the vector M along the axes of the
y noninertial system xyz
M}({O), Mi;O)’ Mio) same as above; O is the origin of the system xyz
M(C), M(C), M(C) components of the moment of the solar radiation
x y z force along axes parallel to x, y, z-axes, centered
at the center of gravity of the spacecraft
MO, MO, MO values of components Mx, M., Mz respectively
x y z for the whole inside area of the reflector
M, M, M components of the moment of the solar radiation
y z force for the back side of the reflector
MXO, M 0’ M;O values of components M, M;,, M'z for the whole
y back side area of the reflector
MR mass of the parabolic reflector
n rate of rotation of the spacecraft about its roll
axis (z-axis)
n, HZ’ 33 unit vectors along the axes of the system £n¢
Nx unit vector along the normal to the reflecting
surface
PI component of force FI along the normal to the
reflecting surface
PR component of force FR along the normal to the
surface
93 93 constants
* heliocentric positicn vector of the spacecraft, also
rgp " 1Tl = Tgp
r dimensionless peclar coordinate
?(C) position vector of a point of the spacecraft relative
to its center of gravity
ﬁE heliocentric position vector of the Earth
S oriented surface
S surface area
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T period of free oscillations of the spacecraft about

0 the x- and y-axis
u unit vector in the Spacecraft-Sun direction
u,, u,, u components of the unit vector u along the axes of
) A .

the coordinate system £n¢

w magnitude of the gradient vector

X, ¥, 2
noninertial, spacecraft-fixed coordinates

X’, yl, z!

xp, yp, zp principal axes of inertia of the spacecraft

X, Y, Z heliocentric inertial coordinates of the spacecraft

XE' YE' ZE heliocentric inertial coordinates of the Earth

a angle between the axis of symmetry of the reflector
and the direction of incoming radiation

ag Earth-Spacecraft-Sun angle

B portion of photons reflected specularly

Y portion of reflected photons

6 semidiameter of the parabolic reflector

€ angle of inclination of the axis of symmetry of the
circular cylinder to the xy-plane

L depth of the parabolic reflector. Also, coordinate
in the §n¢ system of reference

n coordinate in the £nf system of reference

N{a), nl(a) blockage (shadowing) functions for the front and
back surface of the reflector, respectively

0 anygle between the normal to the surface and the
direction of the incident radiation

A consta~’ of the parabolic reflector

A poiar angle used in integration

o reflectivity cha_acteristics of a surface

Hpr Mg values of pu for the froat and back surface of the

reileciur, respectively
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v reflectivity characteristics of a surface

Vs V values of v for the front and back surface of the
FF 'B .
reflector, respectiv:ly
£ coordinate in the £€n¢ reference frame
r geocentric position vector of the spacecraft
P e |
¢ polar coordinate
¢ = &(x,v,2) equation of the reflecting surface
X angle between the projection of the axis of sym-
metry of the circular cylinder on the xy-plane and
the x-axis
N angular dimension of the parabolic reflector
w angular velocity vector
w angular velocity
W, W, w components o” the angular velocity vector along
¥y 2 the axes of the noninertial frame of reference xyz
Q angular dimension of the parabolic reflector
Qq frequency of the free oscillations of the spacecraft

about the x- and y-axis
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