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Chapter 1

Introduction to Special Relativity,
Measuring Time and Space in the
Same Units, Intelligent Observers,
Event and Space-time Diagrams

1.1 What is Relativity, and
Why is it Special?

Suppose we are trying to describe the world
as we see it. We would need to tell the lo-
cation of objects in our world, the velocities
of the objects, and how these change with
time.

Consider two observers, let us call them Al-
fred (A) and Betsy (B). Alfred and Betsy
could be at rest relative to each other, in
which case they would see a constant dis-
tance and direction of one relative to the
other—the vector displacement between the
two would be constant. This is a pretty bor-
ing scenario.

Instead let us suppose that Betsy is mov-
ing relative to Alfred. According to Alfred,
Betsy:

(a) could be moving in a straight line at a

constant speed, with a changing separa-
tion but in the same direction

(b) could be moving in a straight line at a
changing speed, i.e. accelerating, but
moving in the same direction

(c) could be moving in a circle around Al-
fred, with a constant separation, but ev-
erchanging direction

(d) any of an infinite number of other pos-
sibilities

Alfred could record the location and veloc-
ity of Betsy in intervals of 1 second. Alfred
would know that he is at rest with himself.
Betsy would know that she is at rest with
herself. She could then record the location
and velocity of Alfred in intervals of 1 sec-
ond.

We say that Alfred and Betsy are in relative
motion, and relativity is a mechanism of de-
termining Betsy’s numbers knowing Alfred’s

1



2 1.2 The Parable of the Surveyors

numbers, or vice versa.

There is nothing new about this basic idea of
relativity. The cavemen Akoba and Loana1

would have known that if Akoba saw Loana
in the East, then Loana would see Akoba in
the west.

Fast forward to the time of Galileo who pos-
tulated a Relativity Hypothesis2:

Any two observers moving at con-
stant speed and direction with re-
spect to each other will obtain the
same results for all mechanical ex-
periments.

By the latter half of the 19th century
Maxwell had shown that electricity and mag-
netism were interrelated by 4 equations, and
that these predicted electromagnetic waves
that travel at the speed of light. This
posed problems for Galilean relativity (we
will discuss these in a bit) and scientists
like FitzGerald, Lorentz, and Poincaré found
various patches that made things work bet-
ter3.

Einstein published his paper “On the Elec-
trodynamics of Moving Bodies” in 1905,
showing how the difficulties can be resolved
by simply extending Galileo’s Relativity Hy-
pothesis from mechanical experiments to all
experiments. Subsequent papers expanded
on this new theory now called Special Rela-
tivity.

Initially we will discuss our friends Alfred
and Betsy and have one move at a constant
velocity (speed and direction) relative to the

1From the movie One Million Years B.C.
2Dialogue Concerning the Two Chief World Sys-

tems, 1632
3http://en.wikipedia.org/wiki/History of special relativity

other. Special Relativity works equally well
if one of our friends is accelerating rela-
tive to the other, as we will discuss much
later in the course. Special relativity does
not, however, discuss gravity, and assumes
“flat space-time”—we’ll discuss space-time
shortly, and touch on curved space-time at
the end of the course.

General Relativity is Einstein’s theory that
discusses gravity, and describes masses as
“curving the very fabric of space.” General
Relativity requires a great deal of mathemat-
ical and physical sophistication, and will be
left for other courses.

This course will discuss Special Relativity,
including Reference Frames, Space-Time di-
agrams, invariant space-time intervals, Iner-
tial and Free-floating reference frames, the
Principal of Special Relativity, consequences
of the theory on the measurement of distance
intervals and time intervals, transformations
between coordinates measured in different
systems, velocity and frequency transforma-
tions, Time and space intervals for acceler-
ated motion, space-like time-like and light-
like intervals, and ending with the ideas of
energy and momentum.

1.2 The Parable of the Sur-
veyors

Spacetime Physics4 begins with an excellent
analogy involving surveyors on a flat earth.
Paraphrased this is:

In the Institute of RIT the direction called
4Spacetime Physics, Second Edition, Taylor and

Wheeler, W.H. Freeman and Company 1992



1.2 The Parable of the Surveyors 3

North was sacred, and distances measured
northward (and southward) were measured
in the sacred unit, the mile. Distances east-
ward were measured in the not-so-sacred
unit, the meter.

A surveyor named Anahita (Persian God-
dess of day) does her work only in daytime.
She uses a magnetic compass to find the di-
rection North. She measures the coordinates
of every important building in the Insti-
tute, relative to the center the Sentinel, and
records the Northward (in miles) and east-
ward (in meters) coordinates of each. (See
Figure 1-1 in Spacetime Physics.) Anahita
is making more careful measurements of the
objects measured by her grandfather Horus
(yeah, I know he is Egyptian not Persian.)
She is able to get readings with more signif-
icant figures than Horus.

Unbeknownst to Anahita, Nyx (goddess of
night, Greek) has been doing her survey-
ing at night, using Polaris to tell her where
north is. She measures the same buildings
as Anahita, starting from the same loca-
tion, the center of the Sentinel. And she
is checking the numbers of her grandfather
Tezcatlipoca (Aztec).

One day Anahita is studying for a Physics
exam and decides to pull an all nighter.
When she stops for some coffee she meets
Nyx, and the two begin to compare num-
bers. Alas, alack their numbers disagree,
not by much, but definitely different. The
differences would not have been obvious in
the lower precision numbers of their grand-
fathers.

After several more pots of coffee arguing over
the numbers, a mutual friend Koit (Esto-
nian God of Dawn) stops by with a radical

suggestion: make a unit conversion to make
the northward distance end up in units of
meters. To get North in meters, multiply
North in miles by a constant k = 1609.344
meters/mile.5

The numbers in Table 1.1 show some of the
records of Anahita and Nyx. Together with
Koit they made a startling observation. In
Spacetime Physics this is written

(k North(mi))2 + (East(m))2 = (distance)2

(1.1)
The distance, and the (distance)2 are exactly
the same number whether the daytime mea-
surements of Anahita or the nighttime mea-
surements of Nyx are used.

This is even easier if we use the distances
measured in the same unit, meters.

(North(m))2 + (East(m))2 = (distance)2

(1.2)

For example, for Stake A

distance2 = (4010.1)2 + (2949.9)2 =
24783000 m2 = (3950.0)2 + (3029.9)2

where we have taken care to write the an-
swer to 5 significant figures, the same as the
numbers used in the computation.

The example works for the coordinates of
each point, but we can also define the dis-
tance between two points by making the fol-
lowing definitions.

∆N12 = North2 (meters)−North1 (meters)
∆E12 = East2 (meters)− East1 (meters)

5Alternately convert all measurements into miles
by multiplying the easterly distance in meters by
1/k = 6.213712× 10−5



4 1.3 Completing the analogy

Table 1.1: Surveying Results
Daytime Anahinda Nighttime Nyx

East North North East North (miles) North (m)
(m) (miles) (m) (m) (miles) (m)

Sentinel 0 0 0 0 0 0
A 4010.1 1.8330 2949.9 3950.0 1.8827 3029.9
B 5010.0 1.8268 2939.9 4950.0 1.8890 3040.1
C 4000.0 1.2117 1950.0 3960.0 1.2614 2030.0
D 5000.0 1.2054 1939.9 4960.0 1.2676 2040.0

We’ll call the two quantities the North In-
terval and the East Interval. Then

(Displacement Interval)2 = (∆N)2 + (∆E)2

(1.3)

For example the north interval from A to D
is

∆NAD = 1939.9 − 2949.9 =
−1010.0 m

and the east interval is

∆EAD = 5000.0 − 4010.1 = 989.9 m using
daytime numbers,

so the displacement interval is

(Displacement Interval)2 = (−1010.0)2 +
(989.9)2 = 2000000 m2.

You can try the same calculation using
nighttime numbers, with different values for
∆NAD and ∆EAD, but the same value for
the displacement interval.

The advantage to using intervals is that we
no longer are required to use one point as a
reference (The Sentinel), but that each per-
son can use a separate reference point from
which to measure.

Together the three goddesses published their
results and described them as the ANK In-

variance Principle: the displacement interval
defined in Equation (1.3) is invariant, that
is it is the same for all observers.

1.3 Completing the anal-
ogy

Table 1.2 makes a comparison of the Para-
ble’s important results with the results for
special relativity.

The last two rows have almost identical
equations. Do you understand the differ-
ence?

Prior to the full acceptance of special relativ-
ity, people believed in absolute time but rel-
ative space. Let’s make this statement more
clear.

Imagine boarding an airplane in Rochester
and deplaning in Seattle. For you on the
plane, the distance from the place where you
sat down in Rochester to the exit door in
Seattle was perhaps 100 feet. For me stay-
ing in Rochester the distance between the
two points is 2698 miles. The space interval
is dependent on the observer, i.e. relative
to the observer. This causes us no confu-
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Table 1.2: Connecting Parable and Special Relativity
Parable Special Relativity

North measured in miles Time measured in Seconds
East measured in meters Distance measured in meters

Conversion Factor k = 1609.344 m/mi Conversion Factor c = 2.99792458× 108 m/s
N(m) = kN(mi) t(m) = ct(s)
E(mi) = E(m)/k x(s) = x(m)/c

North Interval ∆N = N2 −N1 Space Interval (1D) ∆x = x2 − x1

East Interval ∆E = E2 − E1 Time Interval ∆t = t2 − t1
(Displacement Interval)2 = (k ∆N)2 + (∆E)2 (Space-Time Interval)2 = (c∆t)2 − (∆x)2

(Displacement Interval)2 = (∆N)2 + (∆E)2 (Space-Time Interval)2 = (∆t)2 − (∆x)2

sion.

For you on the airplane the flight may have
taken 5 hours. For me on the ground, the
flight would also have taken 5 hours. Nor-
mally we think of time intervals as not de-
pendent on the observer, but absolute. This
was assumed to be true until 1905.

A direct check of whether time intervals are
relative or absolute requires very accurate
clocks, clocks that were not available un-
til 1949. Measurements with less precise
clocks could not distinguish between abso-
lute and relative time intervals. we might
believe time to be absolute, but if we had
very accurate clocks, we would find that the
time interval measured by you on the plane
and me on the ground would be different.
This is one of the wonderfully weird conse-
quences of relativity that we will explore in
detail. And yes, that exact experiment, fly-
ing atomic clocks on airplanes, was done in
1975 and confirmed the predictions of rela-
tivity6.

6Both Special and General Relativity were needed
to analyze the results, SR because of the motion of
the plane and GR since the airplane is at a different
altitude that the ground where the gravitational field

The final line in the table is interesting.
For the parable the displacement interval
is just the Pythagorean Theorem. In spe-
cial relativity we use a space-time inter-
val (STI) with STI2 calculated by subtract-
ing the square of the space interval from
the square of the time interval. The nega-
tive sign will turn out to have profound ef-
fects.

1.4 Time in meters, Space in
seconds

In the parable we had different units for
northward and eastward positions. In spe-
cial relativity we have different units for po-
sition (meters) and for time (seconds). In
the parable, we found it more natural to ex-
press the northward and eastward positions
in the same units. Likewise in Special Rela-
tivity we find it useful to have the same units
for space and time.

You all know about light-years. A light year
is a unit of distance equal to the distance

is different.
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travelled by light in one year. Essentially we
are measuring distance in a unit of time. To
convert from meters to seconds we divide by
the speed of light—and for convenience we
will use the value 3.00× 108 m/s.

Example Convert the following distances
into time units. Use approprite prefixes
rather than scientific notation. (a) 30
cm (about 1 foot) (b) 6378 km (radius
of earth) (c) 1 a.u. = 93 million miles
(distance to sun) (d) 30 a.u. (distance
to Neptune)

(a) 0.30 m
3.0×108 m/s

= 1× 10−9 s = 1 ns

(b) 6378 km
3.0×108 m/s

= 6378000 m
3.0×108 m/s

= 21.3 ms

(c) First convert 93 million miles into
meters. Here is a lazy way to do it: en-
ter “93e6 miles in m” into Google and
get the answer 1.50 × 1011 m. Then
1.50×1011 m
3.0×108 m/s

= 500 s

(d) Multiply the answer to (c) by 30 to
get 15000 s = 15 ks (or 4 hours, 10 min.)

Likewise we can convert time from units of
seconds into units of meters.

Example Convert the following into units
of meters, using the appropriate prefix
and not scientific notation. (a) 0.025 s
(this would be a 30 cm lead at the end
of a 100 m dash) (b) 50 minutes (c) 1
day

(a) (0.025 s)(3 × 108 m/s) = 7.5 ×
106 m = 7.5 Mm

(b) 50 minutes =
3000 s, so (3000 s)(3 × 108 m/s) =
9× 1011 m = 900 Gm

(c) 1 day = 86400 s, so (86400 s)(3 ×

108 m/s) = 2.59× 1013 m = 25.9 Tm

There are two ways to write equations in
relativity. One uses conventional units such
as m for space, s for time with an equation
like

Space− time Interval =
√

(c∆t)2 − (∆x)2

(1.4)
and the other assumes that a single set of
units is used so that

Space− Time Interval =
√

(∆t)2 − (∆x)2

(1.5)

You should be able to distinguish between
the two based on the context of the prob-
lems being worked on. We will tend to use
the same units for space and time, unless
we have to match up to something in the
lab.

Example We have not given any justifica-
tion for the Special Relativity formulas
yet, but here is how we could use them.
Suppose a rocket carries a laser that it
pulses periodically. For Ralph on the
rocket, the space interval is zero, but
for Grace on the ground the laser will
have moved between flashes. Suppose
we have the following data. Fill in the
quantities marked ??

Table 1.3: Using the relativistic interval
∆tr Rckt ∆tg Gnd ∆xg Gnd ∆xg Gnd
Time Time Space Space
Interval Interval Interval Interval
(ns) (ns) (ns) (m)

(a) ?? 15 ?? 3.6
(b) 15 ?? 20 ??
(c) 40 58 ?? ??
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(a) Find the ground space interval in
ns, ∆xg = 3.6 m/3 × 108 m/s =
12 ns. Then use (Space-Time
Interval)2 = (∆tr)2 − (∆xr)2 =
(∆tg)2 − (∆xg)2.

(∆tr)2 − 02 = 152 − 122 so that
∆tr = 9 ns

(b) (∆tr)2 − 02 = (∆tg)2 − (∆xg)2 so

(∆tg)2 = (∆tr)2 + (∆xg)2 giving
∆tg = 25 ns.

For ∆xg in meters, ∆xg = (3 ×
108 m/s)(20× 10−9 s = 6.0 m

(c) (∆tr)2 − 02 = (∆tg)2 − (∆xg)2 so

(∆xg)2 = (∆tg)2 − (∆tr)2 giving
∆xg = 42 ns.

For ∆xg in meters, ∆xg = (3 ×
108 m/s)(42× 10−9 s = 12.6 m

1.5 Intelligent Ob-
servers

Much of the confusion that arises in relativ-
ity comes from the basic meaning of observa-
tion, and we must spend some time on this
seemingly trivial and boring subject7. Let’s
first carefully define some terms: object, lo-
cation, instant, and event.

• Object: This includes an observer
(Alan), another object (rocket), but
also things like the crest of a wave. The
object can be point-like and have a sin-
gle location, or may be large and spread
out.

7The following exercises are adapted from Rachel
Scherr PhD thesis.

• Location: This is a set of specific space
coordinates (x, y, z) but the time is not
defined.

• Instant: This has a definite time coordi-
nate, t, but can apply to many different
locations.

• Event: This refers to a specific location
and time, that is a definite set of values
for (x, y, z, t).

Consider the following items: define them
as object, location, instant, event, or none
of the above.

(a) The Declaration of Independence.

(b) The dot over the “i” in Benjamin
Franklin’s signature on the Declaration.

(c) Babe Ruth’s final home run.

(d) The opening of the Olympic games in
China.

(e) Your friend honks her horn.

(f) The sound travels from your friend to
you.

(g) You hear the beep.

(h) Two successive beeps on your friend’s
horn.

What ambiguities do you need to
worry about in using these terms?
How can you resolve these ambigui-
ties?

Next consider the values that two observers
will see for the positions and instants of
some events. Here use just ordinary non-
relativistic physics, the stuff that operates
in almost all of what you see.
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For now we will talk about the space sep-
aration and the time separation of two
events.

1. A straight runway is 100 m long. A
small explosion occurs at the east end of
the runway (Event 1); 10 seconds later,
an explosion occurs at the west end
of the runway (Event 2). An airplane
moves from west to east with speed 25
m/s relative to the runway.

How far apart in space are the locations
(i.e. what is the space separation) of the
explosions:

• in the frame of the runway? Ex-
plain.

• in the frame of the airplane? Ex-
plain.

2. Two physics students, Alan and Beth,
are shown in Figure 1.1. Alan and Beth
have measured their exact relative dis-
tances from points X and Y.

Sparks jump at the points marked X
and Y. When each spark jumps, it emits
a flash of light that expands outward in
a spherically symmetric pattern. Alan,
who is equidistant from points X and Y,
receives the wavefront from each spark
at the same instant.

Answer each of the following questions
for the observers listed.

(a) Does Alan conclude that for his
reference frame, the spark that
jumped at point X jumps before,
after, or at exactly the same time
as the spark that jumped at point
Y? Explain your reasoning.

(b) Does Beth receive the wavefront
from the spark that jumped at
point X before, after, or at ex-
actly the same time as the wave-
front from the spark that jumped
at point Y? Explain your reason-
ing.

(c) Does Beth conclude that for her
reference frame, the spark that
jumped at point X jumps before,
after, or at exactly the same time
as the spark that jumped at point
Y? Explain your reasoning.

(d) Does Beth’s answer in (b) agree
with Alan’s observation that he re-
ceives the sparks at he same time?
If they do not, explain why they
get different answers.

(e) Do the answers of Alan and Beth
about when the sparks occur, parts
(a) and (c), agree? If they do not,
explain why they get different an-
swers.

3. A physics student named Alan and a
beeper are arranged as shown in Fig-
ure 1.2. The beeper has just emitted a
beep (the arcs show the sound progress-
ing through space), and Alan wants to
determine the exact time of the beep.
However, he is a long way from the
beeper and unable to travel to it.

(a) Alan is equipped a large number of
accurate meter sticks and clocks,
and has a lot of friends (Alex, Al-
fred, Andy, . . . ) who will assist
him if necessary. Neither the me-
ter sticks nor the clocks are af-
fected by being moved.
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Figure 1.1: Alan, Beth, and location of sparks (X and Y). Alan is equidistant from the two
sparks and receives light from the sparks at the same time.

Figure 1.2: Alan and a Beeper. Alan wants
to determine the time at which the beeper
beeped.

i. Describe a procedure by which
Alan can determine the dis-
tance to the beeper. Remem-
ber he cannot move.

ii. Describe a set of measure-
ments by which Alan can de-
termine the time at which
the beep is emitted using his
knowledge of the speed of
sound in air.

iii. Describe a method by which
Alan can determine the time
at which the beep is emitted
without knowing or measur-
ing the speed of sound first.
( Hint: Alan’s assistants are

free to stand at any location.)

(b) A fugitive from justice is at large
in Rochester. His identity and ex-
act whereabouts are unknown. A
reporter has reason to believe that
the fugitive will soon confess to his
crime, and wishes to record as ex-
actly as possible the time and place
of the confession. Her funding for
this project is excellent

i. Describe an arrangement of
observers and equipment with
which the reporter may record
the position and time of the
confession.

ii. An observer’s reference frame
is an arrangement of assistants
and equipment with which the
observer may record the posi-
tion and time of anything that
occurs.

Justify the claim that the re-
porter’s arrangement of ob-
servers and equipment is the
reporter’s reference frame.

(c) A horn is located between Alan
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and the beeper. The beeper beeps
once and the horn honks once.
Alan hears the two sounds at the
same instant in time.

Figure 1.3: Alan hears a horn and a beeper
at exactly the same time.

i. In Alan’s reference frame, is
the beep emitted before, after,
or at the same instant as the
honk is emitted? Explain.

ii. Describe a method by which
Alan can measure the time
separation between the emis-
sion of the beep and the emis-
sion of the honk in his refer-
ence frame without knowing or
measuring the speed of sound
first.

An intelligent observer is equipped
with measuring devices (such as me-
ter sticks, clocks, and assistants) and
is able to use them to make correct
and accurate observations of where
and when something occurs. Intelli-
gent observers correct for any trans-
mission time taken by signals. All ob-
servers in the study of relativity are
intelligent observers.

1.6 Events and Event Dia-
grams

Event diagrams are a first, very pictorial,
method of showing how events occur. They
are useful for 1D and 2D situations. Con-
sider a 1D situation. Objects are spaced
along a single axis that we boringly call x,
and by convention x increases as we move
to the right. A single drawing can show all
the objects and their locations for one spe-
cific instant in time. It is a snapshot of the
world.

If nothing moves, one such diagram is all we
need. When objects move we need to have
several snapshots at different times—i.e. we
need frames of a movie.

By convention we stack the frames one above
the other, so that on a piece of paper the
first snapshot is at the bottom of the paper,
and successive snapshots are placed above
the first. Thus time increases as we move up
the diagram. The group of frames is like a
flip book.

An event can be shown by marking and
labeling a particular location on a partic-
ular frame (snapshot), and the entire dia-
gram just discussed is called an Event Dia-
gram.

Example Recall the events described in the
last section in connection with Figure
1.3. Draw an event diagram for this sit-
uation.

At the bottom of the page, sketch a
picture showing Alan, the beeper, the
horn, and any other objects of interest
at the instant the beeper beeps. In-
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dicate the location of the event “the
beeper beeps” on the picture. Label it
E1.

Above that picture, sketch another pic-
ture showing the objects of interest at
the instant the horn honks. Indicate the
position of the event “the horn honks”
on this picture. Label it E2.

Above that picture, sketch picture(s)
showing the objects of interest at the in-
stant(s) of the remaining events. Sketch
a separate picture for each different in-
stant of time. Indicate the location of
each event on the appropriate picture.

Be sure you understand the meaning of the
diagram you just drew by answering the fol-
lowing questions.

Does the first frame, the picture you drew at
the bottom of the page, represent an object,
a location, an instant, an event, several or
none of these?

Can more than one object appear in a single
frame? Can more than one event occur in a
single frame?

Can an object occur in several different
frames? Can an event occur in several dif-
ferent frames?

1.7 Synchronization of
Clocks

We require intelligent observers to have
methods to ensure that they are measuring
quantities in the same units, and with the
same origin. In 1999 a Mars orbiter was lost

because NASA used SI units, while Lock-
heed Martin used British Engineering units,
and they failed to do a proper conversion.
We must have a method to avoid such prob-
lems.

Setting up the coordinate system for dis-
tances is relatively easy. We lay out a grid of
metersticks. We can produce them at a cen-
tral plant (in order to ensure that they are
identical) and disperse them throughout the
universe. Figure 2-6 in Spacetime Physics
shows a latticework grid.

We are confident that moving a meter stick
and then bringing it back to rest will not
change the length of the stick, and we will
require that the sticks touch each other, so
a grid is established. Suppose we are at the
origin of the grid. We can then be confident
that when our friend records a location on
a meter stick near her, that her reading will
tell us how far that location is from us.

Clocks are another matter. We can establish
a calibration method for setting the tick rate
of a clock so that we are confident that our
friend’s clock has the same tick rate as ours.
But how do we synchronize the two clocks,
that is how do we ensure that when our clock
reads noon, her clock reads noon? Here is a
method to try.

Alan and Beth are exactly 10 meters apart
relative to the floor as shown in Figure 1.4.
Each of them wears a watch. Both watches
are extremely accurate, run at the same rate,
and measure time in meters. (Remember,
one meter of time is the amount of time it
takes light to travel one meter.) However,
the reading on Beth’s watch is not the same
as the reading on Alan’s watch.
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Figure 1.4: Alan and Beth Prepare to Syn-
chronize Watches.

1. Determine the amount of time, in me-
ters, that it will take a light signal to
travel from Alan to Beth.

2. Beth and Alan decide in advance that
at the instant Alan’s watch reads 50
meters, Alan’s laser pointer will emit a
pulse of light in Beth’s direction.

What time will Alan’s watch read at the
instant Beth first receives the light from
the laser pointer?

3. Describe a method by which Beth could
synchronize her watch with Alan’s (i.e.
make her watch have the same reading
as Alan’s at every instant.)

4. Another physics student, Caroline, is at
rest with respect to Alan and Beth but
is very far from them. Caroline looks at
the reading on Alan’s watch with a pow-
erful telescope, and finds that at every
instant the reading she sees on Alan’s
watch through the telescope is identical
to the reading on her watch.

Is Caroline’s watch synchronized with
Alan’s? Explain why or why not.

1.8 More on Events and In-
telligent Observers

The following exercises should help you bet-
ter understand events, event diagrams, and
measurement by intelligent observers.

1. Two spaceships, A and B, pass very
close to each other. Alan and Andy ride
spaceship A, Alan at the front of ship
and Andy at the rear. Beth and Becky
ride ship B, with Beth at the front of her
ship and Becky at the rear. According
to Alan, ship B moves to the left with
speed v = 3 m/s and ships A and B each
have length 12 m.

Define three events as follows:

• Event 1: Alan and Beth are adja-
cent

• Event 2: Andy and Beth are adja-
cent

• Event 3: Alan and Becky are ad-
jacent

The first frame of an event diagram is
shown in Figure 1.5.

Define ∆xAlan12 = xAlan2 − xAlan1 , where
the superscript tells who is making the
observation, and the subscripts identify
the event or events of interest. This
quantity can be either positive or nega-
tive.

Determine numerical values for the fol-
lowing ratios

• ∆xBeth
12

∆xAlan
12

• ∆xAlan
13

∆xBeth
12

Be sure to explain your rea-
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Figure 1.5: Spaceship flyby showing Event 1 Viewed by Alan

soning in words.

2. A train moves with constant nonrel-
ativistic speed along a straight track.
The train is 12 meters long.

Alan and Andy stand 12 meters apart
at rest on the track (see figure). Beth
and Becky stand at rest at the front and
rear of the train, respectively.

Define these three events.

• Event 1: Alan and Beth pass each
other.

• Event 2: Andy and Beth pass each
other.

• Event 3: Alan and Becky pass each
other.

(a) On a large sheet of paper, sketch
an event diagram showing Alan,
Andy, Beth, and Becky at the in-
stants of events 1, 2, and 3 in
Alan’s frame. (That is, sketch a
separate picture for each different
instant; sketch pictures for succes-
sive instants one above the other;
and indicate the location of each
event on the appropriate picture.)

i. What feature(s) of your event
diagram can be used to indi-
cate that it is a diagram for
Alan’s frame?

ii. How would an event diagram
for Andy’s reference frame
compare to the one you drew
above? Explain.

iii. What procedure could Alan
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Figure 1.6: Alan, Andy, Beth and Becky making measurements for a train.

(or Andy) follow to measure
the distance between the loca-
tions of events 1 and 2?

iv. How far apart in space are the
locations of the following pairs
of events in Alan’s frame?

• Events l and 2

• Events 2 and 3

• Events 1 and 3

(b) Sketch an event diagram showing
events 1, 2, and 3 in Beth’s frame.
Be sure your diagram correctly
represents the motion of the train
in this frame.

How far apart in space are the lo-
cations of the following pairs of
events in Beth’s reference frame?

• Events l and 2

• Events 2 and 3

• Events 1 and 3

(c) How does Beth’s procedure for

measuring the distance between
the positions of two events com-
pare to Alan’s procedure?

(d) On the basis of your answers
above, develop a general rule that
uses an event diagram to deter-
mine how far apart the locations
of two events are in a given refer-
ence frame.

3. Give interpretations for the magnitude
of each of the following quantities; that
is, tell the meaning of the number in
this physical context. One has been pro-
vided as an example. Some quantities
may have more than one interpretation.

(a) ∆xAlan12 This is the displacement of
Beth (train) as measured by Alan
(Andy).

(b) ∆xAlan13

(c) ∆xAlan23

(d) ∆xBeth12

(e) ∆xBeth13
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(f) ∆xBeth23

4. A train of unknown length moves with
constant nonrelativistic speed on the
same track. Alan and his assistants
stand shoulder-to-shoulder on the track.

(a) Describe a method by which Alan
all by himself can determine the
length of the train in his frame if
he knows the speed of the train in
his frame. Specify two events asso-
ciated with this measurement pro-
cedure.

• Event a:

• Event b:

(b) Describe a method by which Alan
can determine the length of the
train in his frame without knowing
or measuring its speed first. Spec-
ify two events associated with this
measurement procedure.

• Event c

• Event d:

5. Suppose event 4 occurs at the front of
a long ship, and event 5 occurs at the
rear of the same ship. Describe the cir-
cumstances in which the absolute value
of ∆xwho?45 is equal to the length of the
ship—be sure to identify who is the ob-
server in each case.

• in the frame S in which the ship is
at rest

• in frame F, in which the ship is
moving

Draw event diagrams to support your
answers.

1.9 Velocity

For most of the course we will focus on the
simplest of motion, motion in a straight line
(1D motion) at a constant speed. We include
the speed (magnitude) and direction (we
could use left/right, East/West, but most
commonly ± to describe the two directions)
in the velocity of an object, v.8

If a single observer measures a space inter-
val ∆x and a time interval ∆t, then we can
write

∆x = v∆t (1.6)

Sometimes it is more useful to think of this
as

v =
∆x
∆t

=
dx

dt
(1.7)

where the last form is the calculus ver-
sion.

It is imperitive that you think of the equa-
tions as written, with intervals, and NOT
as x = v t which assumes that the starting
point is the origin at t = 0.

Conventionally we have units like m/s when
we use Equation (1.7). What happens if
we measure ∆x and ∆t in the same units?
Equation (1.7) then says that the velocity
has no units. It is easier to think of this in
terms of the speed as a fraction of the speed
of light. In dimensionless units c = 1.

8Velocity is a vector and in 2D and 3D we will
need to write it as −→v . A two dimensional vector
velocity will have components, vx = v cos θ and vy =
v sin θ where v is the speed and θ is the angle with
the x-axis.
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1.10 From Event Diagrams
to Space-Time Dia-
grams

Event diagrams are messy when we want to
draw many objects on a diagram and in-
dicate events. A 1D space-time diagram
contains the same information in a more
compact form, as well as in a quantitative
form.

Consider a graph where the horizontal axis
is space, x, and the vertical axis is time, t.
A horizontal line represents many locations
at one instant of time. A vertical line repre-
sents one location at many instants of time.
Note that this is the reverse of what
you usually draw in physics.

We use the same units for the vertical and
horizontal axes. For convenience we will use
the same scale so that when 5 squares =
20 ns on the horizontal axis (space), then
5 squares = 20 ns on the vertical axis (time)
also.

An event is a point somewhere on this
graph—it has a specific position and time
coordinate.

A line on the graph represents the object at
different times. Suppose the object is not
moving. Then its location is constant, and
on the graph we draw a vertical line at the
left and right ends. A vertical line repre-
sents zero velocity.

What would we draw for an object moving
to the right at a velocity v = +0.2c? First
we should recognize that the proper way to
give the velocity for this graph is with di-
mensionless units, so β = +0.2 where we

use β to represent the dimensionless veloc-
ity.

Recall Equation (1.6), ∆x = β∆t, where we
measure time and space in the same units
and speed is dimensionless. Remember that
slope on a graph is rise/run, so the slope on
our space-time graph is

slope =
∆t
∆x

=
1
β

(1.8)

Thus on a space-time diagram, steep lines
are slow speeds. You should have pur-
chased a pad of engineering note paper that
is green with a coarse grid. Each square
could represent 1 ns. Make the origin some-
where in the middle of the paper. On it draw
and label a horizontal axis for space, and a
vertical axis for time. Then draw lines rep-
resenting:

(a) Oscar, an object at x = 1 ns that is not
moving.

(b) Ralph, an object that is located at x =
−10 ns at t = 0 ns and is moving to the
right at βR = +0.40.

(c) Lorraine, an object located at x = +15
ns at t = −5 ns and is moving to the left
at βL = −0.80.

(d) A pulse of light sent to the right by Os-
car at t = 0 ns

The lines you have drawn are called the
world lines for the objects. Be sure you label
the world lines Oscar, Ralph, Lorraine, and
Light.

On the space-time diagram you just made,
mark the following events. You can use the
graph to determine and record the position
and time for each event. Alternately you
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can use algebra to find the answer. The first
problem is done for you.

(a) Ralph blows a bubble at t = −5 ns. On
the graph this event occurs at x = −12
ns.

We can use algebra to get the space and
time coordinates more precisely.

We can expand Equation(1.6) as

x− x0 = βR(t− t0) = βR t− v t0 (1.9)

or rewrite it as

∆t =
1
βR

∆x (1.10)

and expand to get

t− t0 =
1
βR

(x− x0) =
1
βR

x− 1
βR

x0

(1.11)

So for Ralph, x−(−10) = 0.4 (−5) = −2
and solving we get x = −12 ns.

(b) Lorraine snaps her fingers at t = 0 ns.

(c) Ralph and Lorraine meet.

Verify that your coordinates for the other
events are correct.

1.11 Summary

a. It is convenient to measure time and
space using the same units, either units
of length like meters, or units of time like
seconds (sometimes called light seconds.)
The conversion factor is c = 3.00 × 108

m/s. YET TO BE ANSWERED: Why
use this speed, and not another speed like
the speed of sound?

b. We begin by concentrating on space inter-
vals, ∆x and time intervals ∆t between
events.

c. In special relativity the space-time inter-
val, is invariant, that is the same for all
observers, while both the space and time
intervals are relative. YET TO BE AN-
SWERED: Why is this true? What does
this imply?

d. We talk about objects, events, locations,
and instants of time in relativity.

e. We can draw either a pictorial event di-
agram or a more precise space-time di-
agram (graph) to represent objects and
events.

f. A line on a space-time diagram is called
the world-line. The velocity of an object
can be found as the inverse of the slope of
a line on the space-time diagram. Steep
lines mean slow speeds.

g. All observers are intelligent observers.
They have ways to ensure that clocks are
synchronized, and can use friends and a
reference frame to find the location and
time of any event. The transmission time
of a signal from the event to the observer
can be corrected for, and is not the reason
for the weirdness of relativity.

h. We can get a rough idea of what is hap-
pening by drawing world lines on a space-
time diagram, or by doing simple algebra
using Equations (1.9) or (1.11)
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Chapter 2

Reference Frames, Basic
Postulates of Relativity, Time
Dilation, Proper Observers,
Proper Lengths, Simultaneity

2.1 Inertial or “Free-float”
frames

In Chapter 1, I mentioned that Special Rela-
tivity (SR) does not deal with gravity, while
General Relativity (GR) does. Chapter 2 of
Spacetime Physics deals with how to tell if
we must use GR or not.

Imagine that we are doing an experiment
while on an airplane that is flying at a con-
stant altitude above the earth. We release
a pencil and it falls, evidence that gravity is
acting.

If the airplane suddenly enters a steep dive,
things change. The Vomit Comet 1 de-
liberately enters a parabolic path so that
passengers feel the effects of “weightless-

1Or Weightless Wonder as NASA prefers to
call it, http://en.wikipedia.org/wiki/Vomit comet
About 1/3 of the passengers get violently ill, 1/3
feel mild distress, and 1/3 are fine.

ness”.

The airplane and its passengers are in a state
of “free fall”, or as Taylor and Wheeler pre-
fer to call it, “free float”. For the duration
of the parabola the passengers cannot distin-
guish their environment from a truly gravity-
free environment. The space shuttle is like-
wise a free float frame of reference, contin-
uously falling around the earth in a circular
orbit.

The free float frames that we have discussed
are local frames, and if we look carefully
enough, we can tell whether a gravitational
force acts. Consider an initially horizon-
tal railway car dropped so that it appears
to be a free float frame as shown in Figure
2.1(a).

Suppose you are inside the car and watch
two balls, one at each end of the car. For
some period of time you feel no effects of the
earth—that is until the car hits the ground.

19
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Figure 2.1: A large railway car dropped near the earth (a) horizontally (b) vertically. A
ball is located at each end, and is free of the railway car. If the frame is NOT inertial
(free-float, Lorentz), the separation of the balls will change during the duration of the
experiment. This depends on the care with which we can take measurements.

Ouch!

Careful measurements of the positions of the
balls reveals that they come closer together
during the duration of the fall. Likewise in
the case of the vertical fall, Figure 2.1(b),
careful measurements reveal that the balls
move farther apart. There appears to be
some mysterious force that brings the two
balls closer together when the car is hori-
zontal, and farther apart when it is verti-
cal.

This is the result of a non-uniform gravi-
tational field around the earth. In Figure
2.1(a) the balls fall toward the center of the
earth, while in Figure 2.1(b) the ball initially
farther away from the earth moves less than
the ball closer to the earth due to the vari-

ation of gravitational force with distance.
(Here I have used the language of classical
physics and not the language of GR.)

With this backdrop we can describe a local
free float frame of reference. The reference
frame is said to be “free float” or “in-
ertial” or “Lorentz” providing that in
a certain region of space and for a cer-
tain amount of time, throughout the
region, and within the measurement
error, Newton’s First Law is valid: i.e.
a free particle at rest remains at rest,
and a free particle having a velocity
maintains that velocity, both size and
direction.

What does this mean in practice. If the rail-
way car in Figure 2.1(a) is 20 m long and is



2.3 Einstein’s Postulates 21

dropped from a height of 315 m with no air
resistance, then it will hit the surface in 8 s
= 2.4 × 109 m of time. During the fall the
balls will move toward each other a distance
of 1 mm. So the car can be considered an
inertial frame providing we focus on only 8 s
of its world-line and make measurements of
distances only to the nearest cm.

If it is dropped as in Figure Figure 2.1(b)
with the lower edge of the box 315 above
the surface, then in the 8 seconds before it
hits the earth the balls will separate by 2
mm. Again the car can be considered an
inertial frame providing we focus only of 8 s
of its world-line and make measurements of
distances only to the nearest cm.

2.2 What is the Frame of a
Reference Frame

In Chapter 1 we described a method of set-
ting up a grid of metersticks throughout
the universe, and a method of synchroniz-
ing clocks for observers in a single reference
frame.

Suppose that we have a local inertial refer-
ence frame “A”, Albert, and inside this local
frame is a second observer “B”, Betsy, mov-
ing with a constant velocity with respect to
A. Then B will also be a local inertial refer-
ence frame subject to the same constraints
on time and accuracy of measurement as the
first. (In the examples that were given in the
last section this was for 8 sec and position
accurate to the nearest cm.

Albert and Betsy will each have a lattice of
meter sticks and clocks at rest with himself

or herself. They will make measurements us-
ing their own meter sticks and clocks. Spe-
cial Relativity will allow us to compare the
readings that the two observers make.

2.3 Einstein’s Postu-
lates

Einstein’s Postulates of Special Relativity
are generally given as

1. All Laws of Physics are the same in all
free float inertial reference frames. E.g.∑ ~F = m ~a for all inertial frames.

2. The speed of light in vacuum is the same
for all observers.

We will initially talk about two observers in
different reference frames, one moving with
dimensionless speed β with respect to the
other (β = v/c), and we will ask about what
is the same for both observers and what is
different.

What is different for the two observers? Spe-
cific numbers for things like space inter-
vals, time intervals, velocities, accelerations,
forces, electric, and magnetic fields will be
different. For example, Al and Becky are
two observers who measure the intervals be-
tween two events. For these two events, Al
measures a space interval of +51 m and a
time interval of +60 m. For the same events,
Becky measures a space interval of +5 m and
a time interval of +32 m.

What is the same? The Laws of Physics
such as Newton’s Laws and the electromag-
netic Maxwell Equations are the same. Fun-
damental constants—things like Avogadro’s



22 2.4 Time Dilation

number, the charge of the electron, and the
constants ε0 and µ0 from electricity and
magnetism have exactly the same numeric
value in the two inertial reference frames.
The events are the same—if Al sees an
event of a spark jumping a gap, so does
Becky.

Let’s take a brief detour into electricity and
magnetism. In the 1780’s, Charles Au-
gustin de Coulomb developed the law ex-
plaining electric forces. In SI units there
is a fundamental constant ε0 (epsilon-sub-
zero), the permittivity of free space, ε0 =
8.854×10−12 C2/N/m2. In about 1820 Jean
Babtiste Biot and Félix Savart found a law
to explain the magnetic force that includes
a constant µ0 (mu-zero), the permeability of
free space, µ0 = 4π × 10−7N/A2.

Using Einstein’s First postulate we know
that the values of ε0 and µ0 are the same for
different inertial reference frames. In 1861,
James Clerk Maxwell took the equations of
electricity and magnetism and showed that
by combining them he could explain that
light was a combination of an electric and
a magnetic field, and that it should have a
speed of

c =
√

1
ε0µ0

(2.1)

Using the values for the constants given
above. c =

√
1

(8.854×10−12)(4π×10−7)
=

2.998× 108

with units given by√
(Nm2/C2)(A2/N) =

√
m2(C/s)2/C2 = m/s

The First Postulate therefore says that since
ε0 and µ0 are fundamental constants, they
have the same value in all reference frames,
and therefore the speed of light in vacuum

is the same for observer’s in all reference
frames. Thus Einstein’s Second Postulate is
a specific case of the First Postulate.

2.4 Time Dilation

Einstein figured out his theories not by do-
ing real experiments, but rather by doing
thought experiments (Gedankenexperiment
in German) and we shall begin our develop-
ment of the relativity equations with a clas-
sic gedankenexperiment.

Louise (L) sits in a lab and watches Ralph
(R) move to the right in a rocket with speed
β. Ralph has a laser pointer that he aims
at the far side of the rocket where there is
a mirror. Event 1 is Ralph briefly sending
a pulse of light. Event 2 is the light pulse
reaching the mirror, and Event 3 is the light
pulse returning to Ralph. Event diagrams
as seen by Louise and Ralph are in Figure
2.2

For the sake of subsequent calculation, we
can draw the three “frames” superimposed
as is done in Figure 2.3.

Call the width of the rocket, between Ralph
and the mirror, W/2. According to Ralph
the pulse has travelled a total distance W
before he sees it again, and the time inter-
val between events E1 and E3 is ∆tRalph13 =
W/c = W , where we have used the fact that
in dimensionless units, c = 1. Recall that
the superscript tells who is measuring the
time interval between the events, in this case
Ralph.

Now consider the view of Louise. For her,
Ralph and the rocket are moving to the right
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Figure 2.2: Event Diagrams for two views of a gedanken experiment, (a) Louise (L) and
(b) Ralph(R). Events E1: Pulse leaves Ralph E2: Pulse reaches mirror E3: pulse returns
to Ralph

with a speed β. The time interval between
events 1 and 2 is half the total interval,
∆tLouise13 /2, and during this time the rocket
including Ralph and the mirror have moved
to the right a distance ∆x/2 = β∆tLouise13 /2.
The light according to Louise has travelled
along the diagonal taking a time

∆tLouise13

2
=
diagonal

c
= diagonal. (2.2)

Now we use the Pythagorean equation to
say

diagonal2 =
(
W

2

)2

+
(

∆x
2

)2

=
(
W

2

)2

+
(
β∆tLouise13

2

)2

(2.3)

Combining Equations 2.2 and 2.3 and doing

some algebra we end up with

∆tLouise13 =
W√

1− β2
=

∆tRalph13√
1− β2

(2.4)

The factor in Equation 2.4 occurs so fre-
quently that we give it the symbol gamma.
If β < 1, then γ > 1.

γ =
1√

1− β2
(2.5)

and therefore we can write

∆tLouise13 = γ∆tRalph13 (2.6)

We will use γ throughout the course. It is
instructive, therefore, to calculate γ for sev-
eral velocities. Fill in values in Table 2.1.

Example Suppose Ralph measures a time
interval of 24 µs and according to
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Figure 2.3: Multiple exposure of the Event diagram. The heavy lines are the paths taken
by the pulse as seen by Louise and Ralph.

Speed β Dilation Factor γ
0.1000
0.3000
0.5000
0.6000
0.8000
0.9000
0.9900
0.9990
0.9999

Table 2.1: Values of γ

Louise the rocket is moving to the right
at β = 0.6. What is the time interval
measured by Louise?

γ = 1/
√

1− .36 = 1.25 so ∆tLouise =
1.25(24 µs) = 30 µs

Example Suppose Louise sees the rocket
moving at β = 0.06. What will she mea-
sure for the time interval?

γ = 1/
√

1− 0.0036 = 1.0018 so
∆tLouise = 1.0018(24 µs) = 24.04 µs

Example Suppose Louise sees the rocket
moving at β = 0.99. What will she mea-
sure for the time interval?

γ = 1/
√

1− 0.9801 = 7.09 so
∆tLouise = 7.09(24 µs) = 170 µs

Notice that reducing the speed by a factor of
10 has a huge effect on the time interval seen
by Louise. For a speed of 0.06 the difference
between Louise and Ralph is small, but for
a speed of 0.60 it is large and unmistakable.
As the speed approaches the speed of light,
β → 1, γ →∞, the effect is huge!

The time interval measured by Louise in this
case is larger than that measured by Ralph.
The common term used for the increase in
the time interval is time dilation2. Louise
sees Ralph’s clock moving, and often time
dilation is described as “Moving clocks run
slow.”

Special relativity contains a number of seem-
ing paradoxes, that is situations that viewed
from two different viewpoints appear to give
contradictory results. The paradoxes allow
us to sharpen our thinking, because when
we think about them carefully the paradox
disappears.

Consider the paradox that relates to the sit-
uation just analyzed. Louise says that Ralph
moves. We have Equation 2.6 that says the
time interval measured by Louise is larger
than the time interval measured by Ralph.
(Ralph’s clock runs slow.)

2Or if you want to sound British, dilatation.
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But what does Ralph think? Ralph sees
Louise moving, and therefore would say
that his time interval should be larger than
Louise’s time interval. (Louise’s clock runs
slow.)

Only one of these can be correct. How can
the paradox be resolved? Can you see where
the asymmetry comes from? Hint: Think
about the idea of intelligent observers that
we discussed earlier.

2.5 Some Nice Advanced
EXCEL Features

Having to do the calculations over and over
with a calculator is tiring, and prone to er-
ror. Even if you can program a special
calculation pattern into you calculator, you
cannot easily print the results. Excel al-
lows more reliable calculations—at least if
we program it right.

Named cells

Traditionally a cell is addressed by Column
and Row such as C6. This is a relative ad-
dress, meaning that if you enter a formula
into cell B3 like =C6^2, and then copy the
formula into cell C3, the formula changes to
= D6^2. This can be very useful if we want
to apply the same formula to several differ-
ent values.

Sometimes however we might want to refer
to the exact same cell. If cell A1 contained
a value for acceleration, and we wanted to
compute c = a× t2 for several different val-
ues of t in cells in column B, we could not

copy the formula unless we went back and
changed the reference to the acceleration. So
if we typed =A1*B2^2 into cell C2 and copied
it to cell C3, it would become =A2*B3^2, and
we would manually need to change A2 to A1,
as was done in the table below.

A B C
1 5.5 t c
2 2 =A1*B2^2
3 4 =A1*B3^2
4 6 =A1*B4^2

Instead we could use an absolute reference,
$A$1 so that the equation is = $A$1*B2^2.
When this is copied, only the relative cell
reference, B2, changes.

Even nicer would be to name the cell with
a word like “accel”. One way to do this is
to find the cell address up in the tool bar.
With the cursor in cell A1, the cell address
should be A1.

Click in the cell address in the tool bar and
type “accel” and enter. Now the cell has
that name, and we can write an equation
=accel*B2^2.

Writing your own functions

Excel has a wealth of functions like
sqrt, abs, sin, exp, max, average—
the whole list can be seen using
Insert Function from the Insert menu or
the fx shortcut. You can add User Defined
functions also.

Suppose that you want a function that will
calculate γ. Here are the steps.

(a) Go to
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Tools/Macro/Visual Basic Editor
Two windows called Projects and
Properties should appear.

(b) Go to Insert/Module and a Workbook1-
Module1 (Code) window should open.

(c) Click in the Workbook area. The first
command defines the function.

Function gamma(beta) which starts
the definition of a function called gamma
that will take a single argument, beta.

When you hit return, an End Function
statement will appear.

(d) Now type the function. It can have
several lines if needed, and have other
variables besides beta and gamma, but
somewhere you must have gamma = ...

For this function a single line suffices,
gamma = 1 / Sqr(1 - beta ^ 2).
Click back in the spreadsheet and see if
it works.

Look at the function list and you should be
able to find your function in the User Defined
category.

Your test on writing functions. If you
are given a value of γ, what is the value of
β? First work this out algebraically, then
write a function for it called beta(gamma).
This can appear in the same module as
gamma(beta).

Can I Save User-Defined Func-
tions

If you save the Excel workbook, and user-
defined functions are saved with it. To ac-

cess these functions you must reopen the
workbook.

2.6 Proper Observers,
Space-time Interval

Equation 2.6 applies to very special situa-
tions where a time interval is measured be-
tween two events. One observer (Ralph)
must be present at both events. The ob-
server present at both events is called the
proper observer and sees ∆x = 0 and mea-
sures the smallest value for ∆t.

This is consistent with the space-time in-
terval STI =

√
∆t2 −∆x2. Extending the

first example in Section 2.4 to include Syd-
ney, whom Louise sees moving to the left
at β = −0.6. The events are the sending
and receiving of the flash in Ralph’s rocket.
Ralph is the proper observer of time.

Observer ∆t ∆x STI
Ralph β = 0.6 24 0 24
Louise 30 18 24
Sydney β = −0.6 51 45 24

Table 2.2: Observations from example of
previous section. Values in µs.

The data in the table show that different ob-
servers will see different values for the time
interval and the space interval, but the same
invariant value for the space-time interval
(STI).

According to Louise, Sydney has γS = 1.25.
Can we use Equation 2.6 to relate the time
intervals of Louise and Sydney? If you try
the numbers you see that
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∆tS = 51 µs 6= γS × ∆tL = 1.25(24) =
30 µs.

Evidently Equation 2.6 must ONLY be used
when one of the observers is the proper ob-
server.

Example Louise sees Ralph move at β =
0.9 and measures a time interval be-
tween two events of ∆tL = 50 ms.
Ralph is the proper observer of the two
events. What does Ralph measure for
the time interval?

First method Calculate γ = 2.294.
Then 50 = 2.294(∆tR) and we
solve to get ∆tR = 21.8 ms.

Second Method Louise sees Ralph
move ∆xL = βt = 0.9(50) = 45
ms. Equating the expressions for
intervals, 502 − 452 = (∆tR)2 − 0
so ∆tR = 21.8 ms.

Both methods give the same results, as they
must.

Example Suppose we look at events
E1=Ralph briefly sending a pulse of
light and E2 = light pulse reaching the
mirror in our Louise/Ralph scenario.
Who, if anyone, is a proper observer of
the time interval?

2.7 But how do we know
transverse width is the
same for Louise and
Ralph?

In the derivation of the time dilation for-
mula, Equation 2.6 we assumed that both

Louise and Ralph measured the same width
for the rocket, the dimension transverse
(perpendicular) to the relative velocity. How
can we make this assumption?

The proof of this relies on the technique of
reductio ad absurdum. We will make an as-
sumption, follow it to its logical conclusion,
and if that conclusion is absurd we will reject
the original assumption.

Assume that the lateral dimension of a
moving object is less than its lateral dimen-
sion when at rest.

Imagine that we stand next to railway tracks
watching a train riding on tracks heading
straight away from us (into the page.) When
the train is at rest, its wheel base just
matches the track spacing, Figure 2.4(a).
Now suppose the train is moving into the pa-
per, and therefore shrinks in size as shown in
Figure 2.4(b). This is weird, but we expect
weird from relativity.

Finally imagine that we are on the train. We
would see the train at rest and the tracks
moving out of the paper. By the original
assumption we would then see the spacing
of the track reduced as shown in Figure
2.4(c).

In Figure 2.4(b) the car would leave marks
inside the tracks, in Figure 2.4(c) the car
would leave marks outside the tracks. We
cannot have a single set of marks both in-
side and outside the tracks—this is absurd.
So we must reject the original assumption.
We could try a new assumption that the
later dimension of a moving object increases,
but it would also lead to an absurd conclu-
sion.

We are left to conclude that there is no
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Figure 2.4: Railroad car on tracks (a) Both at rest (b) Tracks at rest, car moving into
paper (c) Car at rest, tracks moving out of paper. Diagrams are drawn as if the transverse
dimension changes with motion. The text shows that this assumption is absurd, and that
the transverse dimension must remain unchanged as measured by different observers.

change in lateral dimension of a moving ob-
ject.

2.8 Lengths of Objects
Along Direction of Mo-
tion

Consider a rigid object. It has a definite
length that does not change with time. How
do we go about measuring its length?

If the object is at rest with respect to us we
can walk to the left end and make note of
its position on our reference frame of meter
sticks. Then we can walk to the right end
and note its position, then we subtract the
two readings to get a length. It does not
matter that the measurements are made at
different times. Alternatively we could get
a friend and ask them to stand at the right
end while we stand at the left end, and each
record the positions, at the same time or dif-
ferent times.

If the rigid object is at rest with respect

to us we say that we measure its proper
length.

What will be the length of the object as mea-
sured by intelligent observers in Ralph’s ref-
erence frame?

Suppose that Louise sees a rigid object of
proper length LLouise and sees Ralph move
to the right at speed β. The events of inter-
est are E1: Ralph at left end of object and
E2: Ralph at right end of object.

What is the time interval between the
events? Louise uses numbers obtained in her
reference frame and calculates the time of
the trip to be

∆tLouise =
LLouise

β
(2.7)

Ralph says that Louise is moving to the left
at −β, and that he measures the proper
interval between the two events (Ralph is
present at both) of ∆tRalph. In this time
Louise has moved a magnitude of

LRalph = | − β∆tRalph| (2.8)
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But we know from the time dilation formula
that ∆tLouise = γ∆tRalph. Combining Equa-
tions 2.7 and 2.8 we get the length contrac-
tion formula,

LRalph =
1
γ
LLouise (2.9)

This formula says that moving rods are
measured to be shorter than their rest
length.

Example An electron enters a tube travel-
ing at β = 0.90. In the lab the tube is
100 m long.

(a) What is the length of the tube as
measured by an observer moving
with the electron?

The tube is at rest in the
lab, so the lab measures proper
length. We first calculate γ =
1/
√

1− 0.92 = 2.294.

Then LImproper = 100 m/2.294 =
43.6 m.

(b) For the lab, how long does it take
for the electron to pass through the
tube?

∆tLab = LLab/β = (100 m)/0.9 =
111 m

(c) For the electron, how long does
it take for the tube to pass com-
pletely over it?

∆telectron = Lelectron/β =
(43.6 m)/0.9 = 48.4 m

I can check using the relation be-
tween proper and improper time:

∆tLab = γ∆telectron =
(2.294)(48.4) = 111 m It agrees
with (b)

Example Louise in the lab has a tube at
rest with respect to her that she mea-
sures to be 60.0 m long. She sees Al-
bert moving. Albert measures the time
for the tube to pass over him to be 0.267
µs. What is the relative speed of Albert
and Louise?

Albert measures ∆tAlbert = 0.267µs. Is
this proper or improper time?

Louise measures LLouise = 60 m. Is this
proper or improper length?

A näıve approach would be to just di-
vide these two numbers,

vWrong = 60.0 m/0.267 µ s = 2.25×108

m/s, i.e. βWrong = 0.75.

This is wrong because we are using
numbers from different observers. We
must use numbers from a single ob-
server.

Since β is dimensionless, we convert
the time into meters, ∆tAlbert = (3 ×
108 m/s)(0.267× 10−6 s) = 80.0 m.

We can either compute β as
β = LAlbert/∆tAlbert or β =
LLouise/∆tLouise. I’ll do it with
Louise. To get the time interval mea-
sured by Louise and her assistants, we
use ∆tLouise = γ∆tAlbert.
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Then

β =
LLouise

∆tLouise

=
60 m

γ 80.0 m

=

√
(1− β2)(60.0m)

80.0 m)
(2.10)

Square both sides and rearrange to get

β2 =
(60/80)2

1 + (60/80)2
= 0.360 (2.11)

so that β = 0.600

How do we actually measure the length of
a moving object? It is important to under-
stand this clearly. Consider the object at
rest as shown in Figure 2.5(a). Events E1
and E3 are for recording the position of the
left end of the rod, while events E2 and E4
are for recording the position of the right
end of the rod. While the times will be dif-
ferent for E1 and E3, the position will be the
same. We can use either of the even events
combined with either of the odd events to
determine the length. In symbols

Lrest = (x4−x1) = (x2−x3) = (x4−x3) = (x2−x1)
(2.12)

Now consider a moving rod, Figure 2.5(b).
From the diagram it should be clear that the
length of the moving rod is

Lmoving = (x2 − x3) = (x4 − x5) (2.13)

To measure the length of a moving ob-
ject we must measure the two ends
at the same time, i.e. simultane-
ously.

Space intervals like (x3 − x1) and (x4 − x1)
are certainly valid intervals, and may be of
interest in specific applications, but they do
NOT represent the length of the rod.

Also be sure you know the difference be-
tween what we measure, using our friends
throughout the universe, and what we see
based on light entering our eye. We will dis-
cuss this again in terms of space-time dia-
grams.

2.9 Simultaneity

Now for the most confusing part of relativity,
the relativity of simultaneity. What you will
deduce is that two events that occur at the
same time but at different locations accord-
ing to one observer will NOT be simultane-
ous for a second observer who moves relative
to the first.

Example Al and his friends Aaron and
Andy are standing equally spaced along
the ground, with Aaron to the left, then
Al, then Andy on the right, as shown
in Figure 2.6. They are at rest with
each other, and 50 meters apart. Im-
mediately in front of Al is a bulb that is
flashed at t = 0. This is event E1. Some
time later Aaron sees the flash, event
E2, and Andy sees the flash, event E3.

(a) On the top half of engineering pa-
per draw a space-time diagram as
seen by Al. Show labeled world-
lines for each of the three men, and
for the light that moves left and
right from the bulb. Use a dashed
line for the worldline of light. La-
bel the events E1, E2, and E3.
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Figure 2.5: Event diagrams for measuring the length of a rod (a) at rest (b) moving.
Various events are marked.

(b) According to Al, who sees the light
from the bulb first, Aaron Andy, or
they see it at the same time? Ex-
plain with reference to your space-
time diagram..

(c) At the time that Al flashed the
bulb, Beth was at his location and
moving to the right at β = 0.6.
Draw and label the worldline for
Beth on the spacetime diagram.

(d) Now draw an event diagram as
seen by Beth on the bottom half
of the paper. Here are the steps.

Calculate γ in this case, and then
find the separation of Aaron, Al,
and Andy as seen by Beth. Use
the length contraction formula.

(e) Draw and label the worldlines for
Beth, Al, Aaron, and Andy on the
diagram.

(f) Finally, add worldlines for the light
that moves left and right. Label
events E1, E2, and E3 on the dia-
gram.

(g) According to Beth, who sees the
light from the bulb first, Aaron
Andy, or they see it at the same
time? Explain.

What is up with this? Can it really be
true? Could we actually imagine measuring
this?

Example Alan, Andy, Alex, and the usual
bunch of guys are riding on Spaceship
Alpha. Beth, Beatrix, Betsy, and the
rest of the ladies ride on Spaceship Beta.
(Will they ever meet?) Alan and Beth
stand at the center of their respective
ships. The spaceships may or may not
be the same length—you will find out
shortly. The ships are transparent so
light can pass through to the observers.

Event E1: When the front end of
Alan’s ship is at the same loca-
tion as the rear of Beth’s ship,
a spark jumps between them and
light waves spread out. Char
marks from the spark are left on
both spaceships.

Event E2: Likewise when the rear of
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Figure 2.6: Basic Set-up for simultaneity example

Alan’s ship and the front of Beth’s
ship pass, a spark jumps between
them emitting a light pulse, and
leaving char marks.

Event E3: Alan is equidistant from
the char marks left on his space-
ship, and receives the pulses of
light from both sparks at the
same time (simultaneously). Fig-
ure 2.7 shows this for the instant
of time when the wavefronts arrive
at Alan.]

A) 1. In Alan’s frame, does spark 1
(from event E1) jump before,
after, or at the same time as
spark 2 (from event E2)? Ex-
plain your reasoning.

2. Alan’s friend Andy stands
near Char mark 2 (in their
ship). According to Andy,
does spark 1 jump before, af-
ter, or at the same time as

spark 2 (on the right of pic-
ture)? Explain your reason-
ing.

3. What does the distance be-
tween the char marks in Alan’s
ship tell you about Beth’s
ship? Explain your reasoning.

4. The diagram below represents
the situation in Alan’s frame
a short time after the sparks.
Show the wavefronts at this
time.

B) 1. On gridded paper, draw the
space-time diagram as seen by
Alan. Time and distance will
be measured in the same units,
“squares.” Assume that Alan
measures the length of Space-
ship Alpha to be 20 squares.
Alan sees Beth move to the
right at β = 0.60. On your di-
agram identify events E1, E2,
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Figure 2.7: Wavefronts have just arrived at Alan

Figure 2.8: Sparks have just occurred—not to scale!

E3, and E4, Alan and Beth are
exactly opposite each other.

2. Draw and label the world lines
for the char marks and for the
wavefronts.

3. What is the time separa-
tion, as measured by Alan, in
squares, between

Event 1 and Event 2

Event 1 and Event 4

Event 1 and Event 3

You can get the answer either
from algebra or from the dia-
gram.

C) 1. Who measures the proper
length of Spaceship Alpha—
Alan, Beth, both, or neither.
Explain

2. Who measures the proper
length of Spaceship Beta—
Alan, Beth, both, or neither.
Explain

3. Alan measures the length of
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Spaceship Alpha to be 20
squares. What does Alan
measure for the length of
Spaceship Beta? Explain.

4. What does Beth measure for
the lengths of Spaceship Al-
pha and Spaceship Beta? Ex-
plain.

D) Now use another piece of paper
and draw the space-time diagram
as seen by Beth.

Start about 10 squares up from the
bottom of the paper, and draw the
diagram corresponding to Event 4.
Show the locations of the front,
back, and center of both ships,
and draw world lines for the front,
back, and center of both ships.
Also show the world lines of the
light emitted from the sparks.

Extend the lines as necessary and
determine the times and locations
of events E1, E2, and E3. Mark
the events on the diagram.

Using the diagram, and using al-
gebra, determine the time separa-
tion, in squares, between

Event 1 and Event 2, Event 1 and
Event 4, Event 1 and Event 3

E) Carefully draw an event diagram
as seen by Beth—that is draw pic-
toral diagrams like those on the
first page. Time is positive up-
wards. Show all 4 events, as well as
the spaceships and the wavefronts.

One Final Example Does the Lack of Si-
multaneity make sense? It probably

won’t make sense in terms of being a
natural way of thinking, at least not
now, but is it at least consistent? We
have the same situation as before with
Alan (and friend’s) and Beth.

A. A CD burner sits at Beth’s feet. In
Alan’s frame, when the wavefront
from spark E2 reaches the burner,
it starts to burn a legal copy of an
Eric Clapton CD. When the wave-
front from E1 reaches the burner it
shuts off. If the wavefronts reach
the burner at the same time, or
the wavefront from E1 reaches the
burner first, no music is recorded.

In Alan’s frame, is there any music
burned onto the CD?

In Beth’s frame, is there any mu-
sic burned onto the CD? Explain
how your spacetime diagrams are
consistent with this.

B. Is your answer consistent with
your answers to the following ques-
tion?

Later in the day the CD is removed
from the burner, and Beth travels
with it via courier rocket to Alan.
They play the CD. Will they hear
Clapton or not?

C. Alan also has a CD burner that op-
erates just like Beth’s. In Alan’s
frame, is there any music burned
onto his CD?

In Beth’s frame, is there any music
burned onto Alan’s CD? Explain
how your spacetime diagrams are
consistent with this.
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D. Is your answer consistent with
your answers to the following ques-
tion?

Later in the day when Beth has
traveled via courier rocket to Alan,
they play Alan’s CD. Will they
hear Clapton or not?

2.10 Summary

Our observers are in two inertial frames with
dimensionless relative speed β. and dilation
factor γ = 1/

√
1− β2

Proper time intervals are measured by ob-
servers present at both events. ∆tImproper =
γ∆tProper

Proper lengths of a rigid object are measured
by an observer for whom the object is at rest.
LImproper = LProper/γ

Two events that are simultaneous to one ob-
server are not simultaneous for a different
observer.
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Chapter 3

Lorentz Transformations, Velocity
Transformations, Doppler Shifts,
Approximations

3.1 Mapping with Intervals
Only

What information do we need to have in or-
der to make a space-time diagram? Consider
1D space, i.e. all events occur along a single
line. Well, we need to pick a starting point—
this can be anywhere we choose, suppose it
is Event A with coordinates for Louise of
xLouise = 0 = tLouise.

Now we have another event, Event B. If we
know ∆tLouise and ∆xLouise, then we can
indicate where event B is on Louise’s space-
time map.

If we do not have ∆tLouise but rather
∆tRalph, then the calculation is more diffi-
cult. If one of the observers is a proper ob-
server of the time interval we can use time
dilation to find the improper time interval,
then use the invariant space-time interval
to find the space interval. We would need
to know the relative speeds of the two ob-
servers, β.

There are two other alternatives. We could
set up coordinate systems for the different
observers and give a way to transform po-
sitions and times of events (NOT intervals)
measured by one observer to positions and
times measured by a second observer. We
will discuss Lorentz Transformations in the
next section.

Another approach is to record the invari-
ant space-time intervals between events—
not position and time separately— and use
those invariant quantities to map the events.
We will defer detailed discussion of this, but
will mention the equivalent situation for the
case of the Parable Surveyors of Chapter
1.

Suppose we know the distance between all
points in our world, but NOT the directions.
Can we make an accurate map?

The invariant quantity for our two surveyors
Anahinda and Nyx was the distance between
points. Suppose we have the following data.

37
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To → Roch- Phila- Boston Mon-
From↓ ester delphia treal
Roch- 0 254 335 329
ester
Phila- 0 273 461
delphia
Boston 0 283
Mon- 0
treal

Table 3.1: Distances in miles between cities.
Notice that no directions are given.

If the distance between two points is d, and
we use one point as the origin, then the other
point lies somewhere on a circle of radius d =√
x2 + y2. Circles are easy to draw.

Let’s arbitrarily pick Rochester as the ori-
gin. Philadelphia is 254 miles away. so
we draw an arc of a circle of radius 2.54
inches (Scale factor 1 inch = 100 miles)
and mark Philadelphia somewhere on that
arc (it doesn’t really matter where on the
arc.)

Now to locate Montreal. Draw an arc of ra-
dius 3.29 inches (329 miles) with Rochester
as the center, and an arc of radius 4.61 inches
(461 miles) with Philadelphia as the center.
The two arcs intersect in two locations, and
we arbitrarily pick one of them and mark the
location of Montreal.

Finally to locate Boston, draw arcs with
Rochester (radius = 3.29 inches), Philadel-
phia (radius= 2.73 inches), and Montreal
(radius = 2.83 inches) The three circles meet
at a single point, Boston.

The procedure is shown in Figure 3.1.

What would have happened if we had used

the other intersection of arcs to locate Mon-
treal? The resulting map would be topo-
logically equivalent—if we located Montreal
above Rochester, and looked at the map in
the mirror it would look the same as Figure
3.1.

In the case of Special Relativity the in-
variant is the space-time interval, STI =√

∆t2 −∆x2, and this is the equation of an
hyperbola. If we had a table of several events
and the STI between all pairs of events we
could draw a space-time diagram by using
hyperbolas rather than circles . These are
much harder to draw, but conceptually the
idea is the same as for the Parable of the
Surveyors.

3.2 The Lorentz Transfor-
mation

Often it is much simpler to define our refer-
ence system, including directions, right at
the start, and then record positions and
times of the events. From the positions and
times it is easy to get the space and time
intervals as well as the invariant space-time
interval between any two events.

We consider two observers Ursula the Un-
primed and Pete the Primed who are both
are in inertial reference frames. All mea-
surements made by Ursula will be unprimed
(x, y, z, t, β) and all measurements made by
Pete will be primed (x′, y′, z′, t′, β′).

Since Pete and Ursula are both in iner-
tial reference frames, they must have a con-
stant relative velocity—size and direction—
and we choose to call this line of relative
motion the x-axis, with the x′-axis parallel
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Figure 3.1: Making a map knowing only the distances between cities. The arcs are labeled
with the two cities involved, e.g. RP = Rochester-Philadelphia distance.

to this. Perpendicular to x are y and z axes
(and parallel y′ and z′ axes).

According to Ursula, Pete is moving with a
velocity β along the x-axis. If β is positive,
Pete is moving to the right, if β is negative
Pete is moving to the left.

If Ursula sees Pete move to the right, Pete
sees Ursula move to the left. We can say that
Pete sees Ursula move with velocity along
the x-axis of

β′ = −β. (3.1)

Ursula has an origin somewhere, as does
Pete. We ask Pete to choose the origin of
his coordinate system to lie along Ursula’s
x-axis. (It is moving of course, according
to Ursula. According to Pete it is Ursula
and her coordinate system that are moving.)
Let us define the event E0 = Origins coin-
cide.

Let’s also ask Pete and Ursula to set their
respective clocks to a time of zero at this

event. Since we are talking about a single
event, we can do all of these things without
worrying about relativity. Event diagrams
as seen by Ursula and Pete are shown in Fig-
ure 3.2.

The discussion so far means that an event
occurring at the origin at time zero has the
same coordinates in both reference frames.
That is

x0 = y0 = z0 = t0 = 0 = x′0 = y′0 = z′0 = t′0
(3.2)

Suppose Ursula and Pete look at a ball
that can be moving and accelerating. A
single event has coordinates, (x, y, z, t) and
(x′, y′, z′, t′) as measured by Ursula and
Pete. We want a method to take Ur-
sula’s results and figure out Pete’s results,
a way to transform from one observer to the
other.

Consider the directions y and z that are
transverse to the motion. In Chapter 2 we
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Figure 3.2: Coordinate systems of Ursula the Unprimed and Pete the Primed as seen by
(a)Ursula and (b) Pete. They are drawn as event diagrams with time increasing as you
move upwards. The lower diagrams are for t = t′ = 0, and the systems are shown with a
slight offset so that you can see both.

argued that relative motion will not change
lengths in the transverse direction, and this
means

y′ = y and z′ = z (3.3)

To get the transformations for x and t will
take more work. First lets look at the non-
relativistic transformation between two
observers—i.e. Galilean relativity. The two
observers will have coordinate systems that
coincide at t = 0 and they both look at
a ball. At time t this is shown in Figure
3.3.

From Figure 3.3 we can easily see that
the NON-RELATIVISTIC transformation
is

t′1 = t1

x′1 = x1 − βt1
y′1 = y1 Non− relativistic (3.4)

All of these equations are linear relations,
that is x, y, and t occur raised to the first
power only, and we never see cross terms
containing the products like x t. We will
require this of our relativistic transforms
also.

t = B x′ +D t′ (3.5)

x = G x′ +H t′ (3.6)

Situation 1: Consider these two events, E1:
Pete sends a spark at x′ = 0, t′ = 0. Ursula
will record x = 0, t = 0 for this event. E2:
At a later time Pete sends a second spark,
x′ = 0, t′ = t′.

Pete sees the proper time interval between
these events, ∆t′ = t′ − 0. Ursula sees an
improper time interval ∆t = t − 0 = γ ∆t′.
Hence for this situation t = γ t′ and we can
say that D = γ in Equation 3.5.

Also we can write the location of E2 for Ur-
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Figure 3.3: Galilean (“non-relativistic”) Transformation

sula, x = β t and substituting t = γ t′,
we have x = β γ t′. This expression is
a mixed expression—on the right we have
time measured by Pete, but relative veloc-
ity measured by Ursula. Use Equation 3.1
to make all terms on the right quantities
measured by Pete to get for this situation
x = −β′ γ t′, meaning that in Equation 3.6,
H = −β′ γ.

Situation 2: To get the other two constants
we consider a third event E3 that has coor-
dinates (x, t) for Ursula and (x′, t′) for Pete.
Consider the interval for E1 to E3. Then
∆x = x − 0, and ∆t = t − 0. We use our
established fact that the space-time interval
is invariant to write

∆t2 −∆x2 = ∆t′2 −∆x′2 (3.7)

and using Equations 3.5 and 3.6,

(B x′ + γ t′)2 − (G x′ − β′ γ t′)2 = t′2 − x′2
(3.8)

Expand the squares and collect like terms to
get (

γ2(1− β′2)
)
t′2 + 2 γ(B +G β′)x′t′

+ (B2 −G2)x′2

= t′2 − x′2 (3.9)

In the first term we have
(
γ2(1− β′2)

)
= 1

by the definition of γ, and we can cancel the
t′2 from both sides of the equation. Hence
Equation 3.9 becomes

2 γ(B +G β′)x′t′ + (B2 −G2)x′2 = −x′2
(3.10)

This is not an ordinary equation that is true
for one particular choice of (x, t) but must be
true for all values1 of (x, t) chosen indepen-
dently of each other. This means that

0 = 2 γ(B +G β′)
B = −G β′ (3.11)

and that
(B2 −G2) = −1 (3.12)

Combining Equations 3.11 and 3.12 we end
up with G = γ,B = −γ β′ making our final
transformation equations

t = γ(t′ − β′ x′) (3.13)

and
x = γ(x′ − β′ t′) (3.14)

Why are my Lorentz transforma-
tions different than the ones in the
text?

1“For all” is denoted by ∀ in mathematics.
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The text chooses to only use β, Ursula’s
measure of the relative velocity, while I use
both β and β′. The text must then define
two transformations, the “Lorentz Transfor-
mation” and the “Inverse Lorentz Transfor-
mation”. By using the two relative velocities
β and β′, I need only one transformation.

Table 3.2: Text and Lindberg Transforma-
tions Compared

Text Lindberg
L10a t = γ β x′ + γ t′ 3.13 t = γ t′ − γ β′ x′

x = γ x′ + γ β t′ 3.14 x = γ x′ − γ β′ t′
L11a t′ = −γ β x+ γ t 3.13 t′ = γ t− γ β x

x′ = γ x− γ β t 3.14 x′ = γ x− γ β t

In my version of the transformations, there is
no change of sign between the forward and
inverse transformations, all I need to do is
keep all unprimed variables together, and all
primed variables together. Also space and
time appear symmetrically so that it is easy
to get the second equation from the first just
by switching the roles of x and t.

At some time you may want to de-
fine an Excel function lorentz(beta,a,b)
that does the transformation2. Only
one function is need in my formula-
tion, since t′ = lorentz(beta, t, x), x′ =
lorentz(beta, x, t), t = lorentz(beta′, t′, x′),
x = lorentz(beta′, x′, t′),

2The same form of transformation transforms en-
ergy and momentum from one frame to another.

3.3 Using the Lorentz Trans-
formation

Example Ursula measures the coordinates
of E1 to be x1 = 100, t1 = 500 m. Pete
measures the coordinates of E2 to be
x′2 = 600, t′2 = 900 m. Ursula sees Pete
move to the left at 0.60.

(a) Find the coordinates of E1 as seen
by Pete.

Using the conventional choice of
right as being positive, we have
β = −0.60 and γ = 1.25.

Then x′1 = (1.25)(100) −
(1.25)(−.60)(500) = 500 m
and

t′1 = (1.25)(500) −
(1.25)(−.60)(100) = 700 m

(b) Find the coordinates of E2 as mea-
sured by Ursula.

β′ = −β = +0.60

So x2 = (1.25)(600) −
(1.25)(0.60)(900) = 75 m

and t2 = (1.25)(900) −
(1.25)(0.60)(600) = 675 m

(c) Find the space interval, the time
interval, and the space-time inter-
val between E1 and E2 as mea-
sured by Ursula.

∆x = (75)− (100) = −25 m,
∆t = (675)− (500) = 175 m, and

STI =
√

1752 − (−25)2 = 173.2
m
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(d) Find the space interval, the time
interval, and the space-time inter-
val between E1 and E2 as mea-
sured by Pete.

∆x′ = (600) − (500) = 100 m,
∆t = (900)− (700) = 200 m, and

STI =
√

2002 − 1002 = 173.2 m

Notice that the space and time in-
tervals for the two observers are
different, but the STI is the same.

(e) Are either Pete or Ursula the
proper observer for the time inter-
val between the events? If neither
of these are observers of the proper
time interval, who is?

To observe the proper time in-
terval, ∆x = 0, and this is not
the case for either Ursula or Pete.
Consider Daisy as the proper ob-
server. For Daisy, ∆x′′ = 0. Call
the velocity of Daisy relative to Ur-
sula, β′′ and use the Lorentz trans-
formations for Events E1 and E2.

x′′1 = γD(x1 − βD t1) = γD(100 −
βD 500)

x′′2 = γD(x2 − βD t2) = γD(75 −
βD 675)

Equate the two, since the events
occur at the same location for the
observer of proper time.The γD’s
cancel, leaving an equation that is
easy to solve for βD,

(100− βD 500) = (75− βD 675)

βD = −25/175 = −0.143.

Daisy must move to the left at a

speed of 0.143 in order that E1
and E2 occur at the same loca-
tion for her and she will be the
proper observer for the time in-
terval between these two events.
The proper time interval is (∆t′′ =√

∆t2 −∆x2 = 173.2 m.

(f) What is the velocity of Daisy as
measured by Pete?

We can use the same approach as
the previous part, but using Pete’s
data.

(500− β′D 700) = (600− β′D 900)

β′D = 100/200 = 0.500.

Example Imaginary Space-Time Interval?

Ursula sees event E3 with x3 =
500, t3 = 700 m and E4 with x4 =
688, t4 = 813 m. She sees Pete move
to the right at 0.60.

(a) What does Pete see for coordinates
of E3?

x3 = 1.25(500 − 0.60(700)) = 100
m, t3 = 1.25(700 − 0.60(500)) =
500 m

(b) What does Pete see for coordi-
nates of E4? x4 = 1.25(688 −
0.60(813)) = 250 m, t4 =
1.25(813− 0.60(688)) = 500 m

(c) Calculate the space-time interval
between E3 and E4.

∆t = 813 − 700 = 113 m, ∆x =
688− 500 = 188 m

So STI =
√

1132 − 1882 =√
−22575 = (150 ı) m, an imag-

inary answer. What does this
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mean? Certainly the events can
occur wherever they want to, but
then some space-time intervals will
be real, some imaginary, and some
zero.

We will discuss this further in
the next chapter, and describe
time-like, space-like, and light-like
space-time intervals

Example Ursula stands at the rear of a ship
that she measures to be L = 100 m long
with her friend Ulla at the front. They
watch Pete fly by moving to the left at
0.60; Pete is at the front of his ship and
Paul is at the rear. At t = 0 m Ursula
measures two events, with the help of
her friend Ulla. E1: At x = 0 m a spark
is sent from the front of Pete’s ship to
the rear of Ursula’s ship. At x = L =
100 m a spark is sent from the rear of
Pete’s ship to the front of Ursula’s ship.

(a) According to Ursula, how long is
her ship? Is this a proper length?

(b) Draw a space-time diagram as seen
by Ursula, and on it mark the two
events and appropriate world lines.

(c) Use the Lorentz transformation to
find the x′ and t′ coordinates of the
two events as measured by Pete.

(d) According to Ursula, how long is
Pete’s ship? Is this a proper
length?

(e) According to Pete, how long is Ur-
sula’s ship?

(f) According to Pete, how long is his
ship?

(g) Draw a space-time diagram as seen
by Pete. On it mark the two
events.

(h) Who sees the proper time between
the two events, Pete or Ursula?

(i) Draw an event diagram (picture)
of the events as seen by Pete.

(j) Ursula would say “The spark be-
tween Pete and me occurs simul-
taneously with the spark between
Paul and Ulla.” What would Pete
say about these two events?

(k) According to Pete, simultaneous
with the spark between Ulla and
Paul, Ursula sends a spark. This
is event E3. Find the coordinates
of this event according to Pete.

(l) On the two space-time diagrams,
mark E3.

(m) Using each space-time diagrams,
determine at what fraction of the
length of Pete’s ship the char mark
from the spark in E3 occurs. Do
the two diagrams give the same re-
sult?

3.4 The Velocity Transfor-
mation

Ursula and Pete are watching a third rocket
in which Ted is riding. Ursula measures the
velocity of Pete, Pete measures the velocity
of Ted. From these two velocities we would
like to know what result Ursula would mea-
sure for the velocity of Ted.
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Notation: We will use v for velocity, but
must keep track of who is doing the mea-
suring. A couple of notations are useful.
We could add two subscripts, one for the
object that is moving, and one for the ob-
server. Or we could use a superscript, none
for Ursula’s measurement, and a prime, v′

for Pete’s measurement. To indicate the
velocity of Ted as measured by Ursula we
could write vTU = vT . For the velocity
of Ted as measured by Pete we could use
vTP = v′T .

If Ted is the only object being measured we
could omit the T subscript entirely. Eventu-
ally we will look in 2D and 3D and will need
another subscript for the component of the
velocity.

The relation between velocities measured by
Ursula and Pete is known by a variety of
names: Velocity Addition Formula, Law of
Combination of Velocities, or my choice, Ve-
locity Transformation.

I’ll begin with the non-relativistic Galilean
Transformation.

3.4.1 Non-Relativistic Galilean
Transformation of Veloci-
ties

Start with Equation 3.4, x′ = x−βt. Here is
a non-calculus derivation. An object moves
in 1D from position x1 to x2 in some time
interval ∆t.

Write the coordinates of two different events
as measured by Pete,

x′2 = x2 − β t2 (3.15)

x′1 = x1 − β t1 (3.16)

and subtract

∆x′ = ∆x− β ∆t (3.17)

Now divide by the time interval,

∆x′

∆t
=

∆x
∆t
− β (3.18)

or

v′ = v − β Non− Relativistic (3.19)

Or we can start with Equation 3.4 and do
the derivative from calculus

dx′

dt
=
dx

dt
− β (3.20)

This gives the same result, Equation
3.19.

So if Ursula measures Pete fly past in an
airplane at 90 m/s east and Pete measures a
ball thrown at 5 m/s east, then Ursula knows
that she would measure the ball moving at
95 m/s east. This works great as long as the
speeds are small compared with the speed of
light.

3.4.2 Vectors and Compo-
nents

We have been discussing the position of an
object in 2D and have given its coordinates,
relative to an origin, as x and y. It is also
possible to give the position in terms of a
distance and an angle, r and θ. The rela-
tion between the two ways of presenting the
data are shown in Figure 6.1, and in symbols
are

r =
√
x2 + y2 (3.21)
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Figure 3.4: A two dimensional vector can be
described either by components, x, y, or by
length and angle, r, θ

θ = tan−1 y

x
(3.22)

If we know the distance and the angle
we can use trigonometry to get the compo-
nents.

x = r cos θ (3.23)

y = r sin θ (3.24)

The position is an example of a vector. Sim-
ilar expressions are true for the vector veloc-
ity, we can give its components, vx, vy or its
speed and angle v, θ where

v =
√
v2
x + v2

y (3.25)

θ = tan−1 vy
vx

(3.26)

and
vx = v cos θ (3.27)

vy = v sin θ (3.28)

3.4.3 Relativistic Velocity Trans-
formation

To determine the x component of velocity
of Ted we can use vx,ave = ∆x/∆t and

take small time intervals so the average is
the instantaneous velocity. First use the
Lorentz transformations to get expressions
for the space and time intervals between two
events.

x2 = γ(x′2 − β′ t′2)
x1 = γ(x′1 − β′ t′1)

∆x = γ(∆x′ − β′ ∆t′) (3.29)

t2 = γ(t′2 − β′ x′2)
t1 = γ(t′1 − β′ x′1)

∆t = γ(∆t′ − β′ ∆x′) (3.30)

Now the velocity in Ursula’s reference frame
can be written

vx =
∆x
∆t

=
γ(∆x′ − β′ ∆t′)
γ(∆t′ − β′ ∆x′)

=
∆x′/∆t′ − β′ ∆t′/∆t′)
∆t′/∆t′ − β′ ∆x′/∆t′)

=
v′x − β′

1− β′v′x
(3.31)

We can similarly get the transformation for
the transverse velocity components, using
∆y = ∆y′.

vy =
∆y
∆t

=
∆y′

γ(∆t′ − β′ ∆x′)

=
∆y′/∆t′

γ(∆t′/∆t′ − β′ ∆x′/∆t′)

=
v′y

γ(1− β′v′x)
(3.32)

Similarly

vz =
v′z

γ(1− β′v′x)
(3.33)
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The velocity transformation for x-
components involves only the relative
motion (assumed to be in x direction) and
the x-components of velocity. However
the transverse velocities involve velocity
components in both the transverse direction
(y or z) and the velocities along the x
direction, β and vx. This will lead to
curious results.

Differences between my Velocity
Transformation and that of Spacetime
Physics.

Equation L-13 in Spacetime Physics looks
different than my Equation 3.31. This is be-
cause my formula uses only Pete’s primed
measurements on the right rather than mix-
ing up Pete’s primed and Ursula’s unprimed
measurements.

Notice that by using my notation there is no
need for an inverse transformation, you just
replace primed quantities with un-primed
quantities and vice versa. This is summa-
rized in Table 3.3.

I would suggest writing Excel for-
mulas for the velocity transfor-
mations, vxprime(beta, vx) and
vyprime(beta, vx, vy).

3.5 Using Velocity Transfor-
mations

The key to using Equations 3.31 and 3.32 is
to carefully determine which are the primed
and which are the unprimed velocities, as
well as to remember that β′ = −β. The first
set of examples will be for 1D motion.

Example Ursula measures Pete moving to
the left at a speed of 0.60 and Ted mov-
ing to the right at a speed of 0.50. What
is the velocity of Ted according to Pete?

β = −0.60 vx = +0.50

Then v′x = vx−β
1−βvx

= 0.50−(−0.60)
1−(0.50)(−0.60) =

1.1
1.3 = 0.85

Pete measures Ted moving to the right
at 0.85.

Example Ursula measures Pete moving to
the left at 0.60. Pete measures Ted
moving to the right at 0.50. What does
Ursula measure for the velocity of Ted?

β = −0.60 β′ = +0.60 v′x = +0.50

vx = v′x−β′
1−β′v′x

= 0.50−0.60
1−(0.50)(0.60) = −0.14

Ursula sees Ted moving to the left at
0.14.

Example Ursula measures Pete moving (a)
to the right at 0.95 (b) to the left at
0.95. Pete turns on a flashlight and
measures the light moving to the right
at 1.00. What does Ursula measure for
the velocity of the light?

(a) β = +0.95 β′ = −0.95 v′x =
+1.00

vx = v′x−β′
1−β′v′x

= 1.00−(−0.95)
1−(−0.95)(1.00) =

+1.00

Ursula also sees the light moving
to the right at 1.00.

(b) β = −0.95 β′ = +0.95 v′x =
+1.00

vx = v′x−β′
1−β′v′x

= 1.00−0.95
1−(0.95)(1.00) =

+1.00
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Table 3.3: Comparing Velocity Transformation Equations: vz transformations are like the
vy transformations

Equation Text Equation Lindberg
x-component L-13 vx = v′x+β

1+v′xβ
3.31 vx = v′x−β′

1−β′v′x

Inverse x v′x = vx−β
1−vxβ

3.31 v′x = vx−β
1−βvx

vy Not given 3.32 vy = v′y
γ(1−β′v′x)

v′y Not given 3.32 v′y = vy

γ(1−βvx)

Ursula still sees the light moving
to the right at 1.00.

These examples give us a hint that the
speed of light in vacuum seems to be the
fastest possible speed that any object can
have.

Now consider 2D motion, with the trans-
verse component being the y-axis. Ursula
and Pete are still moving relative to each
other along the x-axis, it is Ted that is mov-
ing in 2D.

Example Ursula measures Pete moving to
the left at 0.60. Pete shines a flash-
light and measures the beam moving at
1.00 at an angle of 37◦ to the x-axis.
What is the velocity—size and angle
(direction)—that Ursula measures for
the light?

β = −0.60 β′ = +0.60 γ = 1.25

v′x = +1.00 cos 37◦ = +0.799

v′y = +1.00 sin 37◦ = +0.602

vx = v′x−β′
1−β′v′x

= 0.799−0.600
1−(0.799)(0.600) = 0.382

vy = v′y
γ(1−β′v′x) = 0.602

1.25(1−(0.60)(0.799) =

0.925

This means that v =
√
v2
x + v2

y =
√

0.3822 + 0.9252 = 1.00

Light still moves at the speed of light in
agreement with Einstein’s Second Pos-
tulate. The angle with respect to the
x-axis is

θ = tan−1 vy

vx
= tan−1 0.925

0.382 =
tan−1 2.42 = 67.6◦

Example Ursula measures Pete moving to
the right at 0.80 and Ted moving at 0.50
at 30◦ above the horizontal. What does
Pete measure for Ted’s velocity?

β = +0.80 β′ = −0.80 γ = 1.667

vx = 0.50 cos 30◦ = +0.433

vy = +0.50 sin 30◦ = +0.250

v′x = vx−β
1−βvx

= 0.433−0.800
1−(0.443)(0.800) = −0.561

v′y = vy

γ(1−βvx) = 0.250
1.667(1−(0.80)(0.433) =

0.229

This means that v′ =
√
v′2x + v′2y =√

(−0.5612 + 0.2292 = 0.606
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at an angle θ = tan−1 vy

vx
=

tan−1 0.229
−0.561 = 157.7◦

3.6 Doppler Shifts

Imagine Pete carrying with him a periodic
source of pulses—this could be a tuning fork
in the case of sound, or a laser in the case
of light. Pete measures the period and fre-
quency of the source, T = 1/f . Ursula sees
Pete moving, and we will consider motion to
be straight toward or straight away from Ur-
sula. When Ursula receives the pulses, what
is the received frequency?

We will define the following conventional pic-
ture. The source is on the left and the ob-
server is on the right. Velocities to the right
are considered to be positive, velocities to
the left are considered to be negative.

Figure 3.5: We use this for our conventional
picture for the Doppler effect. The source
is to the left and the observer to the right.
Velocities to the right are positive, to the left
are negative.

3.6.1 Dopper Equation for
Sound

You may have heard of the Doppler effect
for sound. When a sound source approaches
you, you hear a higher frequency, when the
sound source recedes, you hear a lower fre-
quency. The equation is

fobserved =
1− vobserver/vsound
1− vsource/vsound

for sound

where vsound is the speed of the sound.

This formula works very well since sound
moves in a medium, typically air. For a
long time scientists believed in the ether
(also spelled æther), a medium in which
light was assumed to propagate. During
the 19th century this ether came to need
stranger and stranger properties—it had to
be rigid enough to let light propagate, but
fluid enough to let the earth orbit the sun.
The ether needed to be stationary in one spe-
cial reference frame, that where Maxwell’s
equations were perfectly correct.

Michelson and Morley did an experiment
in 1887 in Cleveland Ohio to determine
the speed of the earth with respect to the
ether. They found no result, one of the first
pieces of evidence that led to the demise of
the ether, and the rise of Special Relativ-
ity.

3.6.2 One-Dimensional Relativis-
tic Doppler Effect

You can follow the following outline to derive
the One-Dimensional Relativistic Doppler
Effect. We will assume that Ursula is at the
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origin of her coordinate system and begin-
ning at t = 0 sends pulses of light to the
right separated by a period T = 1/fs = 2
m. For Ursula, the time T is a proper time
between her sending pulses, and therefore
she measures the proper frequency, fs, of the
source.

At t = 0 Ursula measures Pete to be at
xinit = 5 m and moving with speed β = 0.60
to the right.

(a) Start by drawing a space-time diagram
using 1 small square as 1 m. Show the
world lines for Ursula and Pete. Then
draw the world lines for first three light
pulses that Ursula sends.

Label the events that correspond to Pete
receiving the pulses E0, E1, and E2.
The coordinates for these events are
(t0, x0), (t1, x1), (t2, x2).

(b) Consider the light pulses. For the first
pulse traveling at the speed of light,
1.00, x0 = t0. Write similar equations
for x1 and x2, then generalize to the N th

pulse. Your answers should include T
and N .

(c) Now consider Pete. He started at xinit
and received the first pulse at t0, so we
can write x0 = xinit+β t0. Write similar
expressions for the positions x1 and x2.

(d) Equating the two expressions for x0 we
can solve for t0.

t0 = xinit + β t0 (3.34)

t0 =
xinit
1− β

and so
x0 =

xinit
1− β

(3.35)

Repeat this process to get expressions
for t1, t2, x1, and x2, then extrapolate for
tN and xN . The expressions can contain
β, xinit, N , and T .

(e) Now lets switch to Pete’s viewpoint. Use
Lorentz transformations to get the times
t′0 and t′N , and subtract to get the inter-
val between receiving pulse 0 and pulse
N as measured by Pete. This difference
is N T ′.

(f) Use the fact that γ = 1√
1−β2

=
1√

(1−β)(1+β)
to simplify the expression,

and switch from period to frequency to
get

fobserved =

(√
1− β
1 + β

)
fs (3.36)

This equation relates the source frequency fs
(where the light is generated), measured for
a source at rest, to the frequency fobserved
measured by an observer moving with re-
spect to the source. The source frequency,
fs, is the proper frequency measured by the
source, and the observed frequency, fobserved,
is the proper frequency measured by the ob-
server. The relative velocity β in the equa-
tion is the speed of the source as measured
by the observer, and is positive when the
observer moves away from the source (or the
source moves away from the receiver.).

When you use Equation ??, it is easy to
check that you used the correct sign for β.
If the source and observer are approaching,
fobserved > fs while if they are receding,
fobserved < fs.

If the source is moving, the same equation
is valid and its use will be shown in the last
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example below.

Example Ursula carries a green laser
that has a wavelength of 532 nm
and a frequency fs = c/λ =(
3× 108 m/s

)
/
(
532× 10−9 m

)
=

5.64 × 1014 Hz. Pete is moving away
from Ursula at a speed of 0.10. What
are the frequency and wavelength
measured by Pete?

fobserved =

(√
1− .10
1 + .10

)
5.64× 1014

= 5.10× 1014 Hz

λobserved = c/fobserved = 588 nm

Pete sees the light as being red. This
is an example of red-shift. If Pete and
Ursula were approaching the frequency
would increase, the wavelength would
decrease, and we would call it blue-
shifted light.

Example If we observe a frequency 1/3 of
the emitted frequency, (a) is the source
approaching or receding and (b) what is
the speed?

(a) Since the frequency is lower we must
be receding.

(b) Use Equation 3.36 to get β = +0.80.
The positive sign confirms the direction
of motion.

Example If we observe a frequency three
times (3×) the emitted frequency, (a) is
the source approaching or receding and
(b) what is the speed?

(a) Since frequency is increasing, we are
approaching the source.

(b) Use Equation 3.36 to get β = −0.80.
The negative sign confirms the direction
of motion.

Example Jack sees Paris moving to the
right at 0.60 and George moving to the
right at 0.20, with George to the right
of Paris. Paris is carrying a laser with
wavelength of 700 nm. What is the
wavelength measured by George?

Both are moving, and are moving closer.
Therefore we know that the frequency
observed by George is higher than the
frequency emitted. We also know that
c = f λ and with wavelengths Equation
3.36 becomes

λobserved =

(√
1 + β

1− β

)
λs (3.37)

and if the observed frequency is higher,
the observed wavelength is shorter.

We must use the velocity transforma-
tion equations to find β, the velocity of
Paris seen by George.

β =
0.60− 0.20

1− 0.60(0.20)
= 0.455 (3.38)

Then we get the shorter wavelength by using
a negative sign with β.

λobserved =

(√
1 + β

1− β

)

λs =

(√
1 + (−0.455)
1− (−0.455)

)
700

= 428 nm. (3.39)
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3.6.3 Redshifts

If we know the frequency of the source in
its reference frame, we can use the Doppler
Effect to find speeds of approach or reces-
sion. Let’s apply this to stars. It is very
difficult to bring a known laser to even the
nearest star, so how can we know the source
frequency?

Fortunately nature gives us this information
in terms of the emission spectra (and ab-
sorption spectra) of elements. For example,
prominent lines emitted by Hydrogen (the
Balmer series) are red, Hα, 656 nm, blue
green, Hβ, 486 nm, and two violet lines at
434 nm, Hγ, and 410 nm, Hδ. The rela-
tive spacing of the wavelengths identifies the
source as hydrogen, even if the wavelengths
are Doppler shifted far away from the visi-
ble.

Astronomers define the red shift as

zredshift =
λobserved − λemitted

λemitted

=
femitted − fobserved

fobserved
(3.40)

Figure 3.6 shows the visible Balmer lines as
vertical bars, and the observed spectrum of
quasar 3C 273.3 The peaks in the observed
spectrum are shifted toward longer wave-
lengths as are shown by the arrows. The
computed red shift for this quasar is 0.158
and that translates to a speed of 0.146. If
we look closely at an active galaxy such as
M87, the nucleus will be rotating at a high

3This is one of the nearest quasars, discovered in
1959, and is now known to be the active galactic nu-
clei surrounding a massive black hole. For more in-
formation see http://en.wikipedia.org/wiki/3C_

273

Figure 3.7: Red and blue shifts at the center
of a rotating galactic core. These are shifts
relative to the overall red- or blue-shift due
to the overall motion of the galaxy.

speed. The overall galaxy may be red shifted
by some average amount, but the part of the
galaxy approaching us will be blue shifted
relative to the average, while the part of the
galaxy receding from us will be red shifted
relative to the average. This is shown in Fig-
ure 3.7.

Red shifts are also caused by the expan-
sion of the universe and by strong gravita-
tional fields (General Relativity), and these
become important in the interpretation of
some red-shift data. We will only consider
red shifts due to Doppler effects.

Most stars and galaxies in the universe are
red-shifted, but some nearby galaxies like
Andromeda are blue-shifted. Andromeda
has a velocity of -0.001 and a z-shift of -
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0.001.

Example Find the red shift for a star (a)
approaching at 0.40 (b) receding at
0.90.

(a) β = −0.40.

You can show that

z =
√

1 + β −
√

1− β√
1− β

= −0.34

(b) β = +0.90 and using the equation
we get z = 3.36.

The largest red-shifts corresponding to
quasars have z = 7.

3.7 Approximations

Relativistic effects are very small if we are
moving at “low” speed, β << 1. However
“low” relativistically is still very fast for us
terrestrial observers. When we move slowly
we can make approximations.

Probably the most common approximation
is the Binomial Approximation for (1 + x)n

when x << 1.

(1+x)n ≈ 1+n x+
n(n− 1)

2
x2 + · · · (3.41)

In calculus you can prove this using the Tay-
lor series, but for now just consider one ex-
ample with x = 0.01 and n = 3:

(1 + x)3 =1 + 3x+ 3x2 + x3

= 1 + 3(0.01) + 3(0.01)2 + 0.013

= 1 + 0.03 + 0.0003 + 0.000001
≈ 1.030

Clearly the higher order terms in x con-
tribute very little to the total and can be
ignored. We are making a first-order approx-
imation to the binomial.

For small values of β the binomial expansion
of γ is

γ =
1√

1− β2

= (1− β2)−1/2

≈ 1− (
−1
2

)β2

= 1 + β2/2 (3.42)

Try β = 0.3. The exact value is γ = 1.0483
and the approximation is 1.0450, quite close.
For slower speeds the result is even better.
Try β = 0.1.

Example Ursula sees a proper time interval
of 100.00000 s. She sees Pete moving
at 1380 m/s (Speed of space shuttle.)
What is the time interval according to
Pete?

First lets get the dimensionless speed
and γ.

β = 1380/3 × 108 = 4.6 × 10−6 γ ≈
1 + (4.6× 10−6)2/2 = 1 + 1.058× 10−11

If I try to sum these on my (cheap) cal-
culator I just get 1, so I keep the terms
separate. The improper time interval
measured by Pete is 1.058 ns longer
than the proper interval measured by
Ursula.



54 3.8 Summary

3.8 Summary

It is often convenient to describe position
and time of events, rather than interval be-
tween two events. Lorentz Transformations
allow the conversion of values from one iner-
tial observer to another.

t = γ(t′ − β′ x′)
x = γ(x′ − β′ t′)
y = y′ z = z′ (3.43)

From the Lorentz Transformations we can
get the Velocity Transformations. The
velocity transformations show that noth-
ing can travel faster than the speed of
light.

vx =
v′x − β′

1− β′v′x

vy,z =
v′y,z

γ(1− β′v′x)
(3.44)

Also we can find the Relativistic Doppler
Effect Formula that explains frequency
changes due to motion along the line join-
ing source and observer.

f ′ =

(√
1− β
1 + β

)
f (3.45)

In astrophysics, overall motion of a galaxy
relative to us, the observers, results in a
Doppler Shift, toward blue for approaching
galaxies (rare) or toward red for receding
galaxies. The red shift z is frequently used
to describe the motion. Other sources of
red shift also exist, but are not discussed
here.
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Figure 3.6: Red shift of the Hydrogen Balmer series for quasar 3C 273. Vertical bars are
the locations of lines for hydrogen in the lab. Shifts in the observed spectrum are shown
by the arrows. This quasar has a red shift of 0.158, and a speed of 0.146.
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Chapter 4

Paradoxes and Their Resolution,
Moving Along a Curved Worldline

4.1 Introduction

In this chapter we will examine a whole
bunch of problems and paradoxes that will
help us understand special relativity kine-
matics. At the end we will discuss time along
a general world-line, one that allows an ob-
server to accelerate rather than move at con-
stant velocity.

4.2 The equations

Here are the equations that we have used in
the first three chapters. I have used my ver-
sions of the Lorentz Transformations, Equa-
tions 4.6, and the Velocity Transformations,
Equations 4.7, that have only primed quan-
tities on the right hand side, and unprimed
on the left.

The two observers may be considered Ursula
(unprimed) and Pete (primed.) Pete is mov-
ing with a constant velocity β with respect
to Ursula. The primed and unprimed axes
are parallel, motion is along the x− x′ axes
and the origins coincide at time 0. Both are

inertial reference frames to the limit of ac-
curacy of our measurements.

β′ = −β (4.1)

γ =
1√

1− β2
(4.2)

∆timproper = γ ∆tproper (4.3)

Limproper = L/γ (4.4)

STI2 = ∆t2 −∆x2 (4.5)

t = γ
(
t′ − β′ x′

)
x = γ

(
x′ − β′ t′

)
(4.6)

y = y′ z = z′

vx =
v′x − β′

1− β′v′x

vy =
v′y

γ(1− β′v′x)
(4.7)

vz =
v′z

γ(1− β′v′x)

f ′ =

(√
1− β
1 + β

)
f (4.8)

57
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4.3 Seeing versus Measur-
ing

Spacetime Physics problem 3-15.

You are located in Rochester on a flat earth.
A rocket is heading toward you, with ve-
locity β. As it passes the Golden Gate
bridge in San Francisco it sends out a pulse
of light. It sends a second pulse of light
when it passes under the Gateway Arch in
St. Louis. Based on unintelligent observa-
tion, what would you see for the velocity of
the rocket?

An event diagram is shown below. Assume
that for you on the earth, the second pulse
occurs a time ∆t after the first.

(a) What is the distance between San Fran-
cisco and Saint Louis in terms of ∆t?

(b) At the time of the second pulse, where
is the first pulse located, in terms of ∆t?

(c) What is the space separation of the two
pulses? What is the time separation be-
tween the two pulses?

(d) A näıve calculation of the rocket speed
would be to take the known distance be-
tween the two cities and divide by the
time interval between when you see the
two pulses. What doe this give for vseen?

(e) Suppose the rocket were traveling at β =
0.5. What would be vseen?

(f) Suppose that vseen = 4. What is the
true speed of the rocket?

(g) Suppose that your friend were in San
Francisco. What would she see for the
velocity of the rocket in each of the last

two cases? Hint: you can either rean-
alyze the situation, or use the equation
already derived and a little cleverness to
get the new equation.

(h) Resolve the paradox. Why do we see the
rocket moving faster than light speed?

4.4 Seeing the Length of a
Rod

Pete rides on the primed rocket carrying a
stick that is parallel to the x′-axis and of
length L′ = 100 m. His friend Paris is to
his right and proposes the following method
by which Ursula can determine the length of
the stick. Ursula is at the origin of her coor-
dinate system, and she sees Pete and Paris
move to the right at β = 0.60.

“At time t′ = 10 m Pete and I will stand at
either end of the stick (Pete will be at x′ =
50 m) and send light pulses towards Ursula.
Ursula will measure the time between the
pulses and knowing that the dimensionless
speed of light is 1.00 can say that the length
of the rod equals the time difference between
receiving pulses.”

(a) Without any calculation, can you see the
flaw in the logic? What is it?

(b) Write the coordinates of the two events
(Pete sends flash, Paris sends flash) as
measured by Pete.

(c) Do a Lorentz transformation to find the
coordinates of the events as measured by
Ursula.

(d) At what times will the two pulses arrive
at Ursula who is standing at the origin
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Figure 4.1: Seeing versus Measuring: Event diagram for a rocket heading eastward on a
flat earth.

of her coordinate system?

(e) Using Paris’s method, what would be
the apparent length of the stick as seen
by Ursula?

(f) What is the actual length of the stick
as measured by the intelligent observer
Ursula?

4.5 Scissors Paradox

Spacetime Physics problem 3-14 a. We sim-
ulate a closing scissors by having one hori-
zontal fixed rod, and a second rod tilted at
angle θ to the horizontal and moving verti-
cally downwards with speed β. Consider the
point where the two rods cross. This point
moves to the right at some speed vA. De-
termine vA in terms of β and θ. Find the
conditions under which this speed is larger

than 1 (i.e. faster than light speed.)

Figure 4.2: Scissors Paradox. The horizon-
tal rod is at rest, top rod is tilted and falling.
The point of intersection of the rods can
move faster than the speed of light.

On the figure, draw the rod after it has fallen
for a short amount of time ∆t. Write expres-
sions for distances and then use trigonome-
try.

In Section 4.3 we had a situation where the
observed speed of an object exceeded 1, how-
ever this was the result of NOT using intel-
ligent observers. In the Scissors Paradox we
do not have that problem—the intersection
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point can travel at any speed up to infin-
ity. Does this violate Einstein’s postulates.
If not, why not?

4.6 What If I Could Move
Faster Than Light?

Spacetime Physics Sample problem L-2.
Here is another case of proof by reductio ad
absurdum.

Assume that an object can have velocities
both less than and greater than the speed
of light in vacuum. What does this lead to?
We will see that it leads to the absurd con-
clusion that you could be killed before you
are born. Therefore we must reject the ini-
tial assumption and say rather that objects
can only have speeds 0 < v < c.

Event E1: At a time −4 years on the
planet Klingon, the Peace Treaty of Shal-
imar was signed between Klingon and the
Federation. Immediately upon signing the
treaty, a Federation ship set out on impulse
power at a speed of 0.60 to bring the treaty
to Earth.

The murderous Klingons immediately
started work on a super drive that would
allow them to move faster than the speed
of light. They perfected their drive and
. . .

Event E2: . . . at time 0 the Klingons
launched a ship at speed 3.00 to overtake the
Federation ship and destroy it. Event 3 is
the destruction of the Federation ship.

(a) Determine the position and time coordi-
nates of each of the events as measured
by an observer on Klingon.

(b) Draw a space-time diagram from the
vantage point of the Klingon home
planet.

(c) Use Lorentz transformations to find the
coordinates of each of the events as mea-
sured by the Federation crew.

(d) Draw a space-time diagram from the
vantage point of the Federation ship.

(e) For observers on the planet Klingon, the
Federation ship was destroyed after it
was launched. For observers on the Fed-
eration ship, what is the order of events?

By working through this exercise you
should come to the conclusion of Spacetime
Physics,

“What have we here? A confusion
of cause and effect, a confusion that
cannot be straightened out as long
as we assume that the Super—or
any other material object—travels
faster than the speed of light in a
vacuum.

“Why does no signal and no object
travel faster than light in a vac-
uum? Because if either signal or
object did so, the entire network
of cause and effect would be de-
stroyed, and science as we know it
would not be possible.”

4.7 Change of Measured
Orientation of Ob-
jects

Spacetime Physics Problem L-6a.
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Pete rides a rocket carrying a stick of length
L′ that is tilted at an angle θ′ from the x′-
axis. Ursula in the lab sees Pete move to the
right at β.

(a) What are the x′ and y′ components of
the stick’s ends?

(b) What are the x and y components of
the stick’s ends as measured by Ursula—
assume an intelligent observer?

(c) What is the length of the stick as mea-
sured by Ursula?

(d) What is the angle the stick makes with
the horizontal as measured by Ursula?

(e) Evaluate your expressions for (c) and (d)
for the case of L′ = 100 m, θ′ = 30◦, and
β = 0.60.

4.8 The Headlight Ef-
fect

Spacetime Physics Problem L-9.

As usual, Pete is riding a rocket moving to
the right at β as measured by Ursula. Pete
sends a pulse of light oriented at an angle θ′

to the x′-axis.

Show that for Ursula the light makes an an-
gle θ with

cos θ =
cos θ′ − β′

1− β′ cos θ′
(4.9)

This should be a really easy answer!

Now consider the light emerging from a light
bulb that Pete carries. According to Pete
the light is evenly spread in all directions,
with half of the light emerging with angles

between −π/2 and π/2. We say the half-
angle is π/2.

Find the expression for the half-angle in Ur-
sula’s reference frame.

Evaluate in the case of β′ = −0.95.

The headlight effect says that a moving light
emits light that is concentrated in a small
cone in the forward direction.

4.9 The Rising Stick.

Spacetime Physics Problem L-10.

A stick of proper length L = 20 m is parallel
to Ursulas’s x-axis and is rising at a dimen-
sionless speed vy = 0.5. Pete is seen to move
to the right at β = 0.6. These numbers are
measured by Ursula.

Figure 4.3: The Rising Stick: Observers
move along x-axis, Stick is rising along y-
axis for Ursula.

(a) Explain without doing calculations why
the stick should be tilted according to
Pete.

(b) According to Ursula, the left end of the
stick is at x = 0, y = 0 m at t = 0 m.
This is event E1: left end crossing the x-
axis. What are the coordinates for event
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E2 (x, y and t), the right end crossing
the axis according to Ursula?

(c) What are the x′- and y′-components of
the stick’s velocity according to Pete?

(d) What are the coordinates (x′, y′ and t′)
of the two events according to Pete?

(e) Now consider a third event, the location
of the left end of the stick at the same
time as event E2. What are the x′ and
y′ values for this event?

(f) From the results get the horizontal
length of the stick as measured by Pete.
Does this agree with the length contrac-
tion formula?

(g) What is the angle from the horizontal,
θ′, that Pete measures for the stick?

(h) If you have done this using numbers, go
back and do it with symbols (all parts),
ending up with tan θ′ = γβvy.

Application: Consider problem L-11 in
Spacetime Physics. Here is Ursula’s view.
A stick that is exactly 1 m (proper length)
long moves horizontally at β. A plate with
a hole of diameter exactly 1 m rises verti-
cally at vy. The stick is Lorentz contracted
and therefore should fall through the hole.
But consider the viewpoint of Pete riding
on the stick. For him it is the hole that is
Lorentz contracted and the stick should not
fall through the hole. How can this paradox
be resolved?

4.10 Paradox of the Iden-
tically Accelerated
Twins

Problem L-13 in Spacetime Physics Twins
Andrew and Brad own identical spaceships.
Andrew’s ship is on the left and Brad’s is
on the right separated by some distance. At
time 0 in the earth frame they are 20 years
old and accelerate to the right until they run
out of fuel. According to Mom and Dad
on earth, the twins run out of fuel at ex-
actly the same time, and then have the same
speed vfinal, and they are separated by ex-
actly the same distance as they were at the
start.

Andrew and Brad compare notes and agree
that they had the same history of accelera-
tions, but find that Brad is older than An-
drew. How can this happen?

We will look at a simpler situation where the
acceleration occurs instantaneously by hav-
ing the twins jump from one ship to another.
Here is the trip as measured by Mom and
Dad, with several events given.

Table 4.1: Andrew and Brad take a trip.
Event coordinates measured by Mom and
Dad on earth in units of days.

Event x t

E0 Andrew on ship A 0 0
E4 Brad on ship D 10 0
E1 Andrew jumps A→ B 1 5
E5 Brad jumps D → E 11 5
E2 Andrew jumps B → C 4 10
E6 Brad jumps E → F 14 10
E3 Andrew on C, fuel gone 8.5 15
E7 Brad on F, fuel gone 18.5 15
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This means that at t = 0 days Andrew and
Brad stepped on spaceships A and D trav-
eling at some speed to the right. After 5
days they each jump onto faster spaceships
B and E for another 5 days. Finally they
jump on spaceships C and F that are go-
ing even faster, until those ships run out of
fuel.

(a) Find the velocities of each of the space-
ships A through F.

(b) How much does each twin age during the
trip? This is NOT 15 days!

(c) How far apart are the twins at the start
and at the end of the trip?

(d) Draw a space-time diagram for the
events as seen by Mom and Dad. La-
bel each event on the diagram. Draw
the world line for each twin by joining
the points.

(e) Now consider the events as seen by the
pilots of ships C and F. Find the coor-
dinates of the 8 events by these pilots.

(f) Draw a space-time diagram as seen by
these pilots. Draw the world line for
each twin.

(g) In order to measure the separation of the
twins, you need to measure two events
that occur at the same time. Extend the
world lines so that you can find the sep-
aration at the earliest and latest times
that you found by using the Lorentz
transformations. This is as measured by
the pilots of the last ships. What are the
separations at these two times.

(h) If the twins were of identical age at
events E0 and E4, by how much have
they aged when you compare their ages

at the end of the trips, at the same
times.

The seemingly absurd results that occur in
problems like this can be verified experimen-
tally. In this problem, as in so many other
paradoxes, the resolution to the paradox lies
in remembering that events that are simulta-
neous in one reference frame are no simulta-
neous in a different reference frame moving
with respect to the first. As strange as it
seems, we must embrace this experimental
reality in order to solve problems in special
relativity.

4.11 The Twin Paradox

Spacetime Physics, Chapter 4 discusses this
in detail. Read it carefully to complement
what I will discuss.

The most famous of Special Relativity Para-
doxes is the Twin Paradox, in part because it
was at the center of the 1963 novel La planète
des singes by Pierre Boulle, more familiar to
us as Planet of the Apes, source for innumer-
able movies beginning in 1968.

As Wikipedia summarizes, “Ulysse begins
by explaining that he was friends with
Professor Antelle, a genius scientist on
Earth, who invented a sophisticated space-
ship which could travel at nearly the speed of
light. Ulysse, the professor, and a physician
named Levain fly off in this ship to explore
outer space. They travel to the nearest star
system that the professor theorized might
be capable of life, the red sun Betelgeuse,
which would take them about 350 years to
reach. Due to time dilation, however, the
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trip only seems two years long to the travel-
ers.”1

We will consider a famous pair of twins,
Danny DiVito and Arnold Schwarzenegger.2

Danny stays on earth while Arnold blasts
off making a trip to Proxima Centauri, 4.2
years away, traveling at β = 0.9 for which
γ = 2.29. Danny says that the trip takes
tD = 4.2/0.9 = 4.67 years, while Arnold,
the proper observer, says the trip takes
4.67/2.29 = 2.03 years.

Upon reaching Proxima Centauri, Arnold
immediately returns at the same speed.
Danny says that the round trip takes 9.33
years while Arnold claims that it takes 4.06
years. By this analysis Arnold is younger
than Danny at the end of the trip.

Well that is strange enough, but Arnold
makes the following claim. “In my refer-
ence frame I am at rest, and it is Danny
and the rest of the universe that moves first
at β′ = −0.9, then at β′ = 0.9. I see the
improper distance travelled during the first
half of the trip by Danny and the stars to
be LA = 4.2/2.29 = 1.83 years and this
takes 1.83/0.9 = 2.03 years. Danny mea-
sures the proper time of 2.03/2.29 = 0.89
years. I claim the round trip will take 4.06
years but Danny will measure 1.78 years,
and Danny is younger than me when we
meet again.”

There is a problem—only one of the two can
actually be older. But who is correct? Can

1http://en.wikipedia.org/wiki/Planet of the Apes
Boulle underestimated the distance to Betelgeuse
which is approximately 427 years. In either case,
the rocket must travel at β > 0.99998.

2The movie Twins, 1988, “Only their mother can
tell them apart.”

you see the resolution to this problem, i.e
can you tell whether Danny or Arnold is
older?

The resolution lies in deciding who sees an
acceleration. From riding in cars, you know
that you can sense an acceleration. Danny
never feels an acceleration, while Arnold
does feel an acceleration when he switches
direction at Proxima Centauri. Therefore
Danny’s analysis is correct, and Arnold
is younger than Danny when they meet
again.

Now imagine a slightly more complicated
situation, Danny and Arnold both board
rockets and make round trips traveling at
different speeds so as to return to earth
at the same time. Both have experienced
accelerations. Who is older and who is
younger?

We will examine the Twin paradox closely
in order to answer this question. Notice that
Special Relativity is perfectly well equipped
to deal with situations of accelerations. We
start with a simple situation.

Example Consider the twin paradox in this
way, using space-time diagrams. The
twins will be called Ursula and Pete.
Ursula stays on earth the entire time,
Pete makes a trip to Proxima Centauri,
located 4 light years away from earth,
and back. Heading out he rides on
Spaceship Alpha that travels at β =
0.80, and on the return he rides on
Spaceship Omega that travels at β =
−0.80. All the numbers mentioned so
far are measured by Ursula.

Pete departs on July 4 2006. He and
Ursula agree that they will each send a
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light pulse to the other every July 4.

(a) According to Ursula, how long will
it take for Pete to reach Proxima
Centauri?

(b) Use graph paper and draw the
space-time diagram as seen by Ur-
sula. On it you should have world
lines for Ursula and Pete (i.e. both
spaceships), and for the pulses sent
by Ursula. Mark the events when
Pete receives the pulses from Ur-
sula. How many pulses has Pete
received, including the final one
when he returns to earth? This is
the age of Ursula when they meet
again.

(c) Now compute quantities as seen by
the Captain Ahab of Alpha. What
is the velocity of Spaceship Omega
as seen by Ahab? How long is Pete
on Spaceship Alpha?

(d) Draw the space-time diagram for
Ahab, including world lines for
both Spaceships and Ursula and
the pulses sent by Pete while he is
on Alpha. Mark the events when
Ursula receives a pulse from Pete.
How many pulses has Ursula re-
ceived on the outbound leg?

(e) By symmetry, on the inbound leg
Ursula will receive the same num-
ber of pulses. What is the total
number of pulses received by Ur-
sula for the round trip? This is the
age of Pete when they meet again.

4.12 Position and Time Not
Absolute

Spacetime Physics, Chapter 5 will next be
discussed.

Consider an event, you at the start of this
class. The event has a definite time and
a definite location. However the numer-
ical values of the time and location are
not unique, but vary depending on the ob-
server.

Consider two cities, Rochester and Cleve-
land, and two observers, Alan and Beth.
Alan and Beth start in Cleveland and agree
to call the position there ‘0’. They want
to know the distance from Cleveland to
Rochester. Alan drives along I90 passing
by Buffalo and when he gets to Rochester
his odometer reads 261 miles. Beth vis-
its friends at UPitt, Penn State, and Cor-
nell on her way and her odometer reads 449
miles.

Both Alan and Beth make valid read-
ings. Both agree that Cleveland and
Rochester have definite locations, however
they get different distances between the two
cities.

In the same way we have established the
rules that show that the time interval be-
tween two events is not unique, but depends
on the observer.

For relativity we have an invariant space-
time interval, STI2 = ∆t2 − ∆x2 − ∆y2 −
∆z2.

On a space-time drawing, two events, E1
and E2, that occur at the same location
occur on a vertical line, two events, E1
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and E3, that occur at the same time—
i.e. simultaneously— occur on a horizontal
line.

If we switch to the frame of a different ob-
server events E1 and E2 will no longer occur
at the same location. Events E1 and E3 will
no longer occur at the same time, i.e. no
longer be simultaneous. The STI between
any two events will, however, be the same
for all observers.

Let’s return to our parable of the surveyors
from Chapter 1. Different observers found
different coordinates for parts of the city,
however the distance between buildings was
invariant, i.e. the same regardless of ob-
server. In Section 1 of Chapter 3 we de-
scribed a method to produce a map of the
city given only distances between buildings.
How does this translate to the case of special
relativity?

The invariant quantity for the surveyor’s was
the distance, ∆r =

√
∆x2 + ∆y2 This is the

equation of a circle. The arrows shown on
the left of Figure 4.4 all are the same dis-
tance from the center. In the case of special
relativity the invariant is the STI, in one di-
mension

STI2 = ∆t2 −∆x2 (4.10)

This is the equation of an hyperbola, and
assuming that ∆t > ∆x its principal axis is
time, shown on the right of Figure 4.4.

Recall that in the surveyor’s parable, the two
surveyors had different direction for North.
However both would agree that the same
circle represents points a distance 5 apart.
In the same way in special relativity, dif-
ferent observers will measure different time

and space intervals, but all agree that the
hyperbola represents events separated by a
STI of 5. Unlike the case of the surveyors,
the arrows showing STI appear of different
length, but the computed STI is exactly the
same.

Here is another way to view the hyperbola.
Imagine that a rocket, Alpha, moves to the
right. Alpha carries a light flasher and a mir-
ror, as shown in Spacetime Physics Figure
5-2. Consider two events: E1 = flash pro-
duced, it bounces off mirror and E2 = flash
received back at location of flasher. Alan,
in the rocket, can draw an hyperbola show-
ing an STI between the events. For Alan
∆x = 0, so the vertical arrow connects the
two events as measured by him.

Consider Beth in the lab. She can measure
the space and time intervals, compute the
STI, and will get the same result as Alan.
She will draw an identical hyperbola as did
Alan to show points at the same STI. For her
∆x > 0, so the arrow pointing up and to the
right connects the two events as measured
by her.

Finally consider Sam, riding in a super-
rocket moving faster than Alpha to the right.
Sam will measure time and space intervals
between the events and get the same STI and
therefore draw the same hyperbola as Alan
and Beth. Sam will measure a space interval
that is negative, and the arrow pointing up
and to the left connects the events as mea-
sured by Sam.

So different observers will draw exactly the
same hyperbola, the invariant hyperbola, for
a given STI.

We can check to see that the hyperbola and
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Figure 4.4: On left, surveyor’s parable. Arrows connect points at the same distance from
the center. On the right, an hyperbola representing something happening in the future.
The arrows connect events at the origin with different events on the hyperbola. All arrows
have the same value for the space-time interval, STI.

the Lorentz transformations yield the same
results. Consider Alan who sees (∆t =
5,∆x = 0). Alan draws the hyperbola in
Figure 4.4, with the vertical arrow connect-
ing the two events. The coordinates of the
second event as seen by Beth are (let’s pick)
(∆t = 7.81,∆x = 6.00) m.

What is Beth’s velocity, according to Alan?
Beth must be moving to the left, and with
velocity β = −∆x/∆t = −6.00/7.81 =
−0.768.

Now we can check the Lorentz transforma-
tions to see if they give the same results.
E1 has coordinates (0,0) for both Alan and
Beth. E2 has coordinates (5,0) m as mea-
sured by Alan. We compute γ = 1.562,

then

tBeth = γ(tAlan − βxAlan)
= 1.562(5− (−0.768)0)
= 7.81m

xBeth = γ(xAlan − βtAlan)
= 1.562(0− (−0.768)5)
= 6.00m (4.11)

So our results are consistent.

4.13 General Worldline

Previously we drew worldlines for objects
moving with constant velocities. But life is
not really like that, velocities will increase
and decrease as acceleration occurs. What is
the most general form of a worldline?

Recall that on a space-time diagram, with
time vertical, position horizontal, the slope
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of a straight line equals the inverse of the
velocity:

Slope = ∆t/∆x = 1/β (4.12)

and that the speed of an object must not
exceed the speed of light, β ≤ 1. This means
that the slope, 1/β ≥ 1.

Frequently we use the same scale for time
and position, in which case the above state-
ments tell us that the slope of a worldline
must have an angle with the time axis

−π/4 = −45◦ ≤ θ ≤ π/4 = 45◦ (4.13)

This is shown in Figure 4.5, where the world-
line on the left is possible. At the end of the
worldline I have drawn two lines at 45◦ that
delineate possible futures of the worldline.
Regions shaded are not allowed for the par-
ticle. The two dotted lines define the light
cone, and the worldline (past or future) can
only exist inside the lightcone. You should
be able to explain why the diagram on the
right is impossible.

4.14 Time Kept By Trav-
eller on a World
Line

Let’s say that Figure 4.6 shows a curved
worldline for Beth as measured by Alan, and
two events, E1 and E2. Each of them car-
ries a clock (either a real clock or a biolog-
ical clock). The space interval is the same
for both Alan and Beth, ∆x = 0, and by
our ideas of proper time interval, both read
a proper time interval between the events.
We shall see that these two proper times are
different, however.

The proper time interval that Alan reads is
the time interval read on a clock held by
him, the proper time that Beth reads is the
proper time read on a different clock held
by her. How do the two time intervals com-
pare?

To answer this, break the curved path up
into short pieces where the velocity is almost
constant. E1 and E3 are two events that
fit this description. Only Beth will see the
proper time for the interval, and

∆tAlan13 = γ∆tBeth13 (4.14)

Alternately we could look at the space-time
interval, recalling that ∆xBeth13 = 0,

(∆tBeth13 )2 = (∆tAlan13 )2 − (∆xAlan13 )2 (4.15)

If we add all the proper time intervals for
Beth between E1 and E2 we will get a
shorter time interval for Beth’s clock than
Alan would measure for his clock. Space-
time Physics refers to this as the Principle
of Maximal Aging: Between two events an
observer that travels on a straight line on a
space-time diagram will measure the largest
time interval.

Let’s look at a specific example.

Example From Alan’s viewpoint, he is at
rest, Beth undertakes the path de-
scribed by the following table of data,
and Carl moves to the right at a con-
stant speed of 0.30.

(a) Draw a space-time diagram from
Alan’s viewpoint. Label the world
lines of Alan, Beth, and Carl (as-
sume he starts at x = 0, t = 0).
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Figure 4.5: Space-time diagram showing a worldline for a particle. In general the worldline
must be within 45◦ of the t-axis. At the top end of the line the light cone is drawn showing
possible past path and allowed future path of the particle. The worldline on the right is
impossible—you should be able to explain why.

Table 4.2: Coordinates of Beth, measured
by Alan

t (m) x (m)
0 0
1 0
2 0.2
3 0.8
4 1.4
5 1.6
6 1.4
7 0.8
8 0.2
9 0
10 0

(b) For each small interval, compute
∆t,∆x as measured by Alan, and
compute the proper time interval
measured by Beth.

(c) At the end Alan claims that 10 m
of time have passed. What does
Beth claim? Does this agree with

the Principle of Maximal Aging?

(d) Now consider Carl’s measurements
for the world lines of Alan and
Beth. Do Lorentz transformations
of Beth’s coordinates and of Alan’s
coordinates.

(e) Draw a space-time diagram from
Carl’s viewpoint, and label the
worldlines of Alan, Beth, and Carl.

(f) Using Carl’s measurements for
Alan, repeat the steps of part (b)
to get the proper time intervals.
Then repeat for Carl’s measure-
ments of Beth.

(g) What does Carl compute for the
proper time interval between E1
and E2 for Alan? for Beth? How
do these compare with what Alan
computes? Do the results agree
with the Principle of Maximal Ag-
ing?
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Figure 4.6: Worldlines for Alan and Beth with three events marked. How do the elapsed
times between E1 and E2 compare for the two observers?

So apparently everything is self-consistent,
if a bit weird. We can also make the con-
nection to a free particle, a free particle, by
Newton’s first law, will have a constant ve-
locity, and thus move along a straight world-
line. So we can state the principle of max-
imal aging as “A free particle will travel
the worldline in which it ages by the largest
amount, larger than the aging if it follows a
path where it is accelerated.”

The Principle of Maximal Aging carries over
to General Relativity where it can be used to
explain the curvature of light near a massive
star.

4.15 Maximal or Mini-
mal

Spacetime Physics, Chapter 5 Section 8
points out an important area where confu-
sion can arise.

Suppose Beth carries a laser that she flashes
twice, one after the other separated by a

time ∆tBeth. Alan watches Beth move to
the right at β.

Case 1: What Alan measures for the
time interval between flashes (and remem-
ber, as an intelligent observer he corrects for
any transit time effects) is a time ∆tAlan.
According to our ideas of time dilation,
∆tAlan > ∆tBeth since Beth is the proper
observer of the time interval, being present
at both events. This is true whatever the
speed of Beth (as measured by Alan), and
therefore we can say that Beth measures the
proper time interval and it is the minimum
time interval.

Case 2: But we have just made a big deal
about the time interval measured by an ob-
server traveling along a straight line being
the maximum. Which is it, minimum or
maximum?

Case 1 compares time intervals measured by
two different observers, only one of whom
measures the proper time interval. The
proper time interval is always shorter than
the improper time interval, hence the proper
time interval is a minimum. The ratio of
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the two measured time intervals is always
γ.

Case 2 also compares time intervals mea-
sured by two observers. In this case both
observers see ∆x = 0 m, and therefore
both observers measure a proper time on
their watches. However their watches will
disagree, and the worldline joining the two
events that appears shortest on a space-time
diagram will measure the longer time, with
the maximum time measured by the world
line that is a straight line. There is no sim-
ple expression for the ratio of time inter-
vals.

4.16 Summary

Paradoxes are a good way to check your un-
derstaqnding of special relativity. To remove
the paradox, you must make very careful use
of the rules of special relativity.

On a 1D space-time diagram, hyperbolas
with foci on the time axis connect events
that all have the same space-time interval
from the origin.

World lines are the trajectory of an object
through space-time, and must always have
an angle of magnitude less than or equal to
45◦ from the time-axis.

Principle of Maximal Aging: Between
two events an observer that travels on a
straight line on a space-time diagram will
measure the largest time interval.
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Chapter 5

Time-like, Space-like, Light-like
Intervals, Invariant Hyperbolae,
Minkowski Diagrams

5.1 Introduction

In this chapter we will look at cause-and-
effect in relativity, time-like, space-like, and
light-like intervals, the light cone (again),
and another way to consider the space-time
diagram, Minkowski diagrams.

5.2 Time-like, Space-like,
and Light-like Inter-
vals

We have discussed the invarient space-time
interval, STI, which in one space dimension
is

STI2 = ∆t2 −∆x2 (5.1)

Thus if class is held on a bus and the ground
based observer, Gwen, measures the start
at (t1 = 40, x1 = 20) min and the end at
(t2 = 80, x1 = 45) min, the STI is STI =√

(80− 40)2 − (45− 20)2 = 31.2 min. And

we expect that there is some proper ob-
server, Pete, for whom the two events occur
at the same location.

What is the speed of the Pete, the proper
observer, according to Gwen?

β = ∆x/∆t = 25/40 = 0.625 (5.2)

You can verify that this works by doing the
Lorentz transformations, and find that the
two events both occur at x = −6.4 min and
at times 35.2 and 66.5 min. The proper time
interval for the class is 31.3 min.

Now consider a second pair of events for a
stick moving past you. Event 3 is the left
end of the stick at your eyes, (t3 = 0, x3 = 0)
m, and Event 4 is the right end of the stick
near your toes, (t4 = 5, x4 = 15) m. When
we compute the STI we get

STI2 = (5)2 − (15)2 = −200 (5.3)

What does it mean when the STI2 is nega-
tive?
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Here is a simpler way to get a negative
STI2: Consider two events that occur si-
multaneously but at different locations, say
(t = 0, x = 0) m and (t = 0, x = L) m,
Then

STI2 = 02 − L2 = −L2 (5.4)

and this is invariant for all observers.

The two events just described could refer to
measuring a proper length. For an object of
some non-zero length, there is no observer
who can see the both ends at the same loca-
tion, that is ∆x > 0 for all observers. This
can be made more clear by the following ex-
ample.

Example Alan holds a rod with its left end
at (0, 0) and it right end at (0, 10), that
is he can simultaneously measure the
two ends and find a length of 10 m for
the rod. Alan sees Beth move past at
β = 0.80. Since the rod is at rest with
respect to Alan, he could measure the
ends at any other combinations as is
shown in Table 5.1.

Table 5.1: Measuring the length of a rod,
Time and position in meters.

Event Alan Beth
Number t x t′ x′

E1 0.00 0.00 0.00 0.00
E2 0.00 10.00 -13.33 16.67
E3 10.00 0.00
E4 5.00 0.00
E5 5.00 10.00
E6 10.00
E7 20.00 0.00
E8 20.00 10.00
E9 10.00

Notice that events E1, E4, and E7 refer

to measuring the left end of the rod at
different times, while events E2, E3, E5,
E6, E8, and E9 refer to measuring the
right end.

Since the rod is at rest with respect
to Alan, he can ignore the times com-
pletely and compute the length of the
rod as LAlan = 10− 0 = 10 m.

For Beth’s measurements of the coordi-
nates of the events we use the Lorentz
transformations. The result is shown
for E2, and you can fill in the table for
E4, E5, E7, and E8.

What are events E3, E6, and E9? If
Beth wants to measure the length of
a moving rod, she must simultaneously
(for her) measure the positions of the
left and right ends. And while E1 and
E2 are simultaneous to Alan, they are
NOT simultaneous for Beth. Instead
we must determine where the right end
of the rod is simultaneous to measuring
the left end of the rod, simultaneous for
Beth. Look at E1. Beth measures a
time of 0 m so we need to know where
the right end is at this same tBeth = 0.

We can use the Lorentz transformation,

tBeth =γ(tAlan − βxAlan)

0 =1.6667(tAlan − 0.80(10))

tAlan = 8.0m (5.5)

and hence

xBeth = 1.6667(10− 0.80(8)) = 6.0m
(5.6)

So Beth measures the rod to have length
of 6.0 m.
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Compute the rest of the table, and see
that regardless of when Beth makes her
measurement, she determines the rod to
be 6.0 m long. This of course agrees
with the length contraction formula.

Intervals where ∆t > ∆x are called
time-like, with STI2 > 0. For events
separated by a time-like interval, it is
always possible to find an observer who
will see the events occur at the same
location. Also the temporal order of
the events in time is the same for all
observers, E2 will always be after E1,
however the relative locations are flexi-
ble, ∆x = x2−x1 can be positive, zero,
or negative depending on the observer.
The observer who sees a space interval
of 0 measures a proper time interval,
and this is the smallest interval that can
be measured.

Intervals where ∆t < ∆x are called
space-like, with STI2 < 0. For events
separated by a space-like interval, it is
always possible to find an observer who
will see the events occur at the same
time. Also the spatial order of the
events in time is the same for all ob-
servers, E2 will always be to the right
of E1. However the timing of the evnts
is flexible, ∆t = t2 − t1 can be positive,
zero, or negative depending on the ob-
server. The observer who sees a time
interval of 0, i.e. measures the events
simultaneously, will measures a proper
length interval, and this is the largest
length interval that can be measured.

Intervals where ∆t = ∆x are called
light-like. For events separated by light-
like intervals, something moving at the

speed of light will measure ∆t = ∆x =
0.The only things that travel at the
speed of light at our current under-
standing of physics are photons, the
quantum particles of light. Gravitons,
hypothesized but never yet detected,
would also travel at the speed of light.
Neutrinos were long thought to move at
the speed of light, but since 1998 fairly
strong evidence that they move slightly
slower than c emerged.

5.3 Invariant Hyperbo-
lae

In the last chapter we discussed the invariant
hyperbola. If event E1 is at the origin, then
the hyperbola shows all events E2 that have
the same STI. This arises from

STI2 = ∆t2 −∆x2 = Constant (5.7)

If E1 is at the origin, this becomes

t2 − x2 = constant (5.8)

For time-like intervals the constant is posi-
tive and the hyperbolae are shown in Figure
5.1(a). There are two curves, one in the past
and one in the future that have the same
STI. Notice that for the future hyperbola,
E2 occurs after E1 for all observers, however
some observers say E1 occurs to the left of
E2, some say to the right, and some (proper
observers) say that the two events occur at
the same location.

For space-like intervals the constant is neg-
ative and the hyperbolae are shown in Fig-
ure 5.1(b). Consider event E2 on the right



76 5.3 Invariant Hyperbolae

Figure 5.1: (a) Hyperbolae for time-like events, one at the origin and one on the hyperbolae.
The two events are strictly ordered in time, but can occur to the left, at the same location,
or to the right of each other. (b) Hyperbolae for space-like events, one at the origin and
one on the hyperbolae. The two events are strictly ordered in space, but can occur before,
simultaneous to, or after each other. (c) Hyperbolae (lines) for light-like events. x = ±t

hyperbola. All observers will see E2 to the
right of E1 (the origin), however the time or-
der is not restricted, t2 > t1 or t2 = t1 or t2 <
t1.

Figure 5.1(c) shows the hyperbolae—
actually two lines—for light-like events
where the constant is 0 so that ∆x =
±∆t.

Think about what this implies. Two events
that are separated by a space-like interval
have no definite time order.

For example Ethyl measures that Alan was
born at (t = 0, x = 0) m and Beth was born
at (t = 8, x = 10) m, then STI2 = 82 −
102 = −36m2. Can we answer the question,
“Who was born first?” Certainly we can,
but we will get different answers according
to different observers. For Ethyl, Alan was
born before Beth.

But consider Tammy who moves at β = 0.80.
Applying the Lorentz transformations we get

for Tammy’s measurements (t = 0, x = 0) m
and (t = 0, x = 6) m, so Tammy says that
Alan and Beth were born simultaneously. Or
consider Ivan who moves at β = 0.95. Ap-
plying the Lorentz transformations we get
for Ivan’s measurements (t = 0, x = 0) m
and (t = −4.8, x = 7.7) m, so Ivan says that
Beth was born before Alan. So there is no
strict time-order to the births, however all
observers will agree that Beth was born to
the right of Alan.

If we change the scenario to Alan firing a gun
and Beth dying of a gunshot we can see that
there cannot be a cause-and-effect relation
between the two events.

Notice that in our example, Tammy sees the
smallest spatial separation between the two
events, and for Tammy, ∆t = 0 m. We can
determine the speed required of Tammy as
follows. We have E1 at (0, 0) m and E2 at
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(t, x). For Tammy, tTammy = 0 so

tTammy =γ(tEthyl − βxEthyl)
0 =γ(tEthyl − βxEthyl)

tEthyl =βxEthyl

β =tEthyl/xEthyl = 8/10 = 0.8
or if the first event is not at the origin,

βspace−like =∆t/∆x (5.9)

Wait a minute you might be saying, velocity
is defined as distance over time, not time
over distance. Certainly that is true, but we
are not using this definition, we are using the
requirement of the Lorentz transformation
to get our answer.

Consider time-like intervals where ∆t2 −
∆x2 > 0. We can ask, “What is the ve-
locity of a “proper” observer who would see
the two events occur at the same location?”
Again we first consider E1 to be at the ori-
gin. For the proper observer,

x′ =γ(x− βt)
0 =γ(x− βt)
β =x/t

or if the first event is not at the origin,

βtime−like =∆x/∆t (5.10)

Two events separated by a time-like interval
could be a cause-and-effect pair. For exam-
ple the pair of events E1 = me throwing a pie
thrown at coordinates (t = 0, x = 0) and E2
= a pie hitting you in the face at (50,30) m
are separated by a time-like interval. Hence
I could have been the cause of you being hit
by a pie. Of course there is no guarantee that
just because two events are separated by a
time-like interval, that they are cause and

effect—I may have thrown an apple pie, and
you may have been hit by a coconut cream
pie thrown by Dr. Axon.

On a space-time diagram it is easy to distin-
guish space-like and time-like intervals. In
Chapter 4 we showed a worldline for a par-
ticle. This is repeated in Figure 5.2. This
shows a particle at some definite location in
time and space, plus the past history (world-
line) of the particle. A light cone is centered
on the current coordinates of the particle,
and several other events are shown.

All events that are in the shaded regions (E2,
E3, E4) are separated from the particle by
space-like intervals. Event E1 is separated
from the particle by a time-like interval and
is an event in the particle’s past. E1 could
have caused an effect on the particle. Event
E5 is separated from the particle by a time-
like interval and is an event in the particle’s
future. The particle could cause an effect at
E5.

As the worldline progresses through time,
the (imaginary) light cone travels with it,
separating space-like and time-like events
from the particle.

5.4 Special Lines

In addition to the invariant hyperbolae that
we have already discussed, it is helpful to
discuss two other lines on a space-time dia-
gram.

We consider the space-time diagram of Alan
who sees Beth moving to the right at β =
0.20. As always, we choose the origins of
Alan’s and Berth’s coordinate systems to
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Figure 5.2: Worldline of some particle, showing the light cone and several events around
the current time-space coordinate.

coincide—x′ = x = 0 when t′ = t = 0.

The first special line is the worldline of the
origin of Beth’s coordinate system, that is
where Beth’s origin will be at points in the
future. This suggests a time-like interval,
and we can use Equation 5.10 to get x =
βt.

I’ll try to say it in words—As Beth moves
forward in time she always says that her ori-
gin is at x′ = 0, but Alan says that her origin
at time t is found at x = βt. This is shown
in Figure 5.3(a). The line makes an angle α
where

tanα = x/t = β (5.11)

For β = 0.20, α = 11.3◦.

Note that for this line x′ = 0, meaning
that it is in essence the t′-axis as seen by
Alan.

Now for the second special line. In words,
“At t′ = 0 Beth can measure various posi-
tions along her x′ axis. What will these look
like in Alan’s reference frame?”

This suggests space-like intervals, and we
had Equation 5.9, t = βx. This is shown

in Figure 5.3(b). It also makes an angle α
but with Alan’s x-axis.

If this seems confusing, try this—I’ll use the
example numbers for β = 0.20. Here are
Beth’s coordinates for several points along
her x′ axis at t′ = 0. I use the Lorentz trans-
formation with β′ = −0.20 to get Alan’s
measurements, and note that t = βx does
indeed work.

Table 5.2: Various Events for t′ = 0
Beth Alan
x′ t′ x t

0 0 0 0
1 0 1.02 0.204
2 0 2.04 0.408
3 0 3.06 0.612

Note that for the second line t′ = 0, mean-
ing that it is in essence the x′-axis as seen
by Alan. These two special lines will form
the basis of a powerful graphical way to
look at special relativity, Minkowski dia-
grams.
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Figure 5.3: Two special lines. (a) x′ = 0, this is the t′−axis. (b) t′ = 0, this is the x′−axis.

5.5 Minkowski Dia-
grams

Minkowski diagrams are a variation of space-
time diagrams that include all reference
frames on a single diagram, rather than
having a different diagram for each ob-
server.

As we saw in Section 5.4, there are two spe-
cial lines that are Beth’s x′- and t′-axes as
viewed by Alan, the unprimed observer. The
two axes make the same angle α with the re-
spective x- and t-axes. Equation ?? tells us
how to compute the angle, tanα = β.

The angle is in the range −90◦ < α < 90◦.
As is shown in Figure 5.4, positive angles
occur for Beth moving to the right, and neg-
ative for Beth moving to the left.

The remaining complication is to determine
where the tick marks occur on the rotated
axes.

Consider equally spaced marks on the x′

axis. For all these points t′ = 0. We

can then use the Lorentz Transformations
to get the coordinates in Alan’s unprimed
frame. Of course (t′ = x′ = 0) transforms to
(t = 0, x = 0). For (t′ = 0, x′ = 1),

t = γ(0− β′1) = −γβ′ = γβ

x = γ(1− β′0) = γ (5.12)

The distance from the origin to this point is,
by the Pythagorean Theorem,√

(γβ)2 + γ2 = γ
√

1 + β2 (5.13)

Example Suppose β = 0.6, γ = 1.25
Then the spacing on the (t′, x′) axes is
1.25
√

1 + .62 = 1.46. On the Minkowski
diagram we can then place tick marks
for the primed axes. This is shown on
Figure 5.5.

What can the Minkowski diagram tell us?
The relativity of simultaneity is obvious.
Look at Figure 5.5(a). The solid and hollow
dots occur at different times in Alan’s frame,
but at the same time in Beth’s frame.

Figure 5.5(a) also shows length contraction.
The solid rod is at rest in Alan’s frame, with
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Figure 5.4: Minkowski diagrams for Beth (t′, x′) moving to the (a) right at 0.20, α = 11.3◦,
and (b) left at −0.60, α = −31◦. Dashed lines show how to read values of (t′, x′).

a length of 1 unit. Since the rod is at rest
with respect to him, he can measure the two
ends at different times and still get a correct
length. Beth sees the rod as moving, so for
her to get a correct length she must measure
the lengths at the same time t′—these are
the hollow and solid dots at t′ = 0. Reading
the length on the x′ axis gives a length of
about 0.8, and that agrees with length con-
traction.

Figure 5.5(b) shows how the coordinates
read from the diagram agree with the
Lorentz transformation (no surprise, since
the transformation was used to produce the
diagram.) For Alan, the solid dot has co-
ordinates (t = 1, x = 2.5) m, while for
Beth the coordinates are indicated with the
hollow dots and are (t = −0.64, x = 2.3)
m by my crude measurement on my dia-
gram. The Lorentz transformations give
(t = −0.63, x = 2.38), in agreement with
the graphical measurement.

5.6 Summary

The relation between two events can be
time-like, light-like, or space-like.

For events E1 and E2 with a time-like in-
terval, the square of the space-time interval,
STI2 = ∆t2 − ∆x2 is positive and event
E2 occurs after event E1 for all observers,
∆t > 0. Different observers will measure dif-
ferent values for ∆x: some will see event E2
occur to the left of E1, some will see event
E2 occur to the right of E1, and one ob-
server will see the events occur at the same
location. Earlier we described this as the
proper observer of the time interval, and for
this proper observer the time interval is a
minimum.

For events with light like intervals, the space-
time interval is 0. There is no physical ob-
server who can see the events occur at the
same location or the same time. Only rays
of light have this property.
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Figure 5.5: (a) Using Minkowski Diagram for Length of a rod (b) Coordinates of an event

For events with space-like intervals, the
square of the space-time interval is negative,
and if E2 occurs to the right of E1 for one
observer, it occurs to the right for all ob-
servers, ∆x > 0. Different observers will
measure different values for ∆t: some will
see event E2 occur before E1, some will see
event E2 occur after E1, and one observer
will see the events occur at the same time
(simultaneous).

On a space-time diagram with one event at
the origin, hyperbolas with foci on the time-
axis connect time-like events with the same
space-time interval. Hyperbolas with foci of
the space-axis connect space-like events with
the same space-time interval. Diagonal lines
at 45◦ connect light-ike events.

For an event on a world line, we can draw a
“light cone” that makes it easy to categorize
other events in relation to the point on the
world-line as space-like, light-like, or time-
like. Cause-and-effect events must be time-

like (however being time-like does not imply
causality.)

In regular space-time diagrams we use one
diagram for each observer. Minkowski di-
agrams allow a single diagram to be used
for different observers. If a second observer
has a velocity β relative to you, the axes for
that observer are given by t = x/β for the
t′-axis and by t = βx for the x′-axis. these
are rotated by and angle α = tan−1 β from
the t- and x- axes. Coordinates of an event
in your frame are determined by projecting
lines parallel to your t- and x- axes. Coordi-
nates in the other frame are determined by
projecting lines parallel to the t′- and t′-axes,
but the scale is different on the two different
axes.
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Chapter 6

Energy and Momentum

6.1 Overview

In this final chapter we will discuss the rel-
ativistic expressions for energy, E, and mo-
mentum ~p and explain the meaning of per-
haps the most famous physics equation of
them all. E = mc2. First we will discuss a
formalism that is useful when dealing with
space-time as well as energy-momentum,
four vectors.

6.2 Four Vectors

First consider a classical vector like posi-
tion, ~r. We typically describe a vector as
something having a size (magnitude) and a
direction (one or more angles). Thus on a
2D surface, a position could be described as
“5.0 m at a direction of 25◦ north of east
from me.”

Usually we define x- and y-axes correspond-
ing to East and North, and then find vector
components along these directions If the vec-
tor has size r and angle θ from the x-axis,
then

x = r cos θ
y = r sin θ (6.1)

Often in math, and sometimes in physics, a
vector is written by giving the components
inside parentheses like (3, 4,−5).

If we have the components we can get the
magnitude by

r =
√
x2 + y2 2D

r =
√
x2 + y2 + z2 3D (6.2)

In our parable of the Surveyors, the dis-
tance, calculated from Equation 6.2 was
the invariant quantity, the same for all ob-
servers.

For relativity, the space-time interval, STI,
was the invariant.

STI =
√

∆t2 −∆x2 −∆y2 −∆z2 (6.3)

By parallel construction to a classical
vector, a 4-vector can be written as
(∆t,∆x,∆y,∆z) with Equation 6.3 used
to calculate the magnitude of the 4-
vector1.

1A second way to get the signs correct is
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6.3 Classical Energy and
Momentum

In high school physics you should have dis-
cussed the ideas of energy and momentum,
and discussed the Laws of Conservation of
Energy and of Momentum.

Energy is a scalar (simple number) that
comes in many forms, kinetic energy, KE,
potential energy, PE, chemical energy,
Echem . . . .

For a point object, kinetic energy is defined
classically in terms of the mass and speed of
the object as

KE =
1
2
mv2 Classical Kinetic Energy

(6.4)

The total energy of a system is defined as
the sum of all types of energies,

E =
∑

KE +
∑

PE +
∑

Echem + · · ·
(6.5)

The Law of Conservation of Energy then
says

For an isolated system of particles,
the total energy is constant for all time.(6.6)

Momentum (technically linear momentum)
is a vector that is defined classically in
terms of a particles mass, m and velocity
~v as

~p = m~v (6.7)

to use ı =
√
−1 and write the 4-vector as

(ı∆t, ı∆x, ı∆y, ı∆z) with the magnitude being
STI =

p
(∆t2 + (ı∆x)2 + (ı∆y)2 + (ı∆z)2)

Once we have a coordinate system we can de-
termine the components of the momentum,
(px, py, pz).

For a system of particles, the total momen-
tum is

~ptot =
∑

~pi (6.8)

and the Law of Conservation of Momentum
is

For an isolated system of particles,
the total momentum is constant

for all time. (6.9)

Consider a one-dimensional, elastic collision
between two billiard balls on a horizontal
pool table shown in Figure 6.1. The first
ball has mass m and initially moves to the
right at v0 = 0.60 towards the second ball, of
mass 2m, which is at rest. The balls collide
head on and separate in a situation where
only kinetic energy needs to be considered.

Figure 6.1: Head on 1D elastic collision of
two particles

Find the speeds of the two balls after the
collision.
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Writing conservation of momentum,

m(0.60) + 0 = mv1 + (2m)v2

0.60 = v1 + 2v2

v2 =
0.60− v1

2
(6.10)

and conservation of energy,

1
2
m(0.60)2 + 0 =

1
2
mv2

1 +
1
2

(2m)v2
2

0.36 = v2
1 + 2v2

2 (6.11)

Now substitute Equation 6.10 into Equation
6.11 and do some algebra (and a quadratic
equation) to get

v1 = 0.60 v2 = 0 or
v1 = −0.20 v2 = 0.40 (6.12)

The first solution is our initial condition,
and the second is the answer after the colli-
sion.

6.4 Does This Definition of
Momentum Work Rela-
tivistically?

Another reductio ad absurdum proof. As-
sume that the solution to the collision is Sec-
tion 6.3 is correct for the observer in the
lab. Then by the postulates of relativity
it should be correct for someone moving at
constant velocity measured by the lab, say
β = 0.50.

Using the velocities previously found, we
use velocity transformation equations to get
the velocities as measured by the moving
observer. These are summarized in Table
6.1.

In the Lab frame momentum is con-
served,

Before m(0.600) + 2m(0) = m(0.600)
After m(−.200) + 2m(0.400) = m(0.600)

(6.13)

The lab observer sees momentum conserved
using the classical expression. However the
Second Observer has a problem,

Before m(0.143) + 2m(−.50) = m(−0.857)
After m(−0.636) + 2m(−0.125) = m(−0.886)

(6.14)

The lab observer sees momentum conserved,
while the moving observer says momentum is
not conserved. Similar results hold true for
energy conservation, total kinetic energy is
conserved in teh Lab, but not for the Second
Observer.

The Conservation Laws are very powerful in
classical physics, and we wold like to have
similar laws in special relativity. To do so we
will need to redefine momentum and kinetic
energy.

6.5 Dealing With Units

In Chapter 1 we found a way to have time
and position have the same units. Similarly
in relativity we would like to have energy
and momentum have the same units. The
same conversion factor c will suffice.

Classical units of energy are (kg m2

s2
) or

joule, J.
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Before Lab Measures Second Observer Measures
Ball of mass m 0.60 0.143
Ball of mass 2m 0.00 −0.50
After
Ball of mass m −0.20 −0.636
Ball of mass 2m 0.40 −0.125

Table 6.1: Classical Calculation of Billiard Ball Velocities Seen in Lab and by an Observer
moving at 0.50. Velocities for second observer are found using velocity transformations.
While Energy and momentum are conserved for the Lab observer, they are not for the
second observer as is shown in the text.

Classical units of momentum are
(kg m

s ).

By multiplying the momentum by c = 3.00×
108 m/s it will have the same units as energy.
Or we could divide the energy by c2 to get
units of kg and divide the momentum by c
to also get kg.

Example An rock has a momentum of 6.0×
10−6 kg m/s. What is its momentum in
joules?

p = 6.0× 10−6(3.00× 108) = 180 J

Example A stick has energy of 1800 J and
momentum of 9.0×10−5 kg m/s. What
are these quantities in kg?

E = 1800 J/(3.00 × 108 m/s)2 = 2.0 ×
10−14 kg

p = (9.0 × 10−5 kgm/s)/(3.00 ×
108m/s) = 3.0× 10−13 kg

The most common unit for energy and mo-
mentum used in special relativity is the
electron-volt, eV. You will discus this when
you take Modern Physics.

6.6 New Definitions for Mo-
mentum and Energy

Spacetime Physics has a very elegant
introduction to relativistic energy and
momentum—so elegant that I am not sure it
is easy to learn until you already are familiar
with the answer. So I will just present the
relativistic formulas and discuss them.

Here are the relativistic results.

(a) Mass, m, is invariant. For example the
mass of an electron is 9.11 × 10−31 kg
when it is at rest or when it is moving
relative to you.

(b) For a particle of mass m moving with
velocity ~v Momentum is defined as

~p = γm~v

px = γmvx

py = γmvy

pz = γmvz (6.15)

(c) The total energy of the particle is

E = γmc2 (6.16)
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(d) There is an invariant quantity relating
mass, energy and momentum,

(mc2)2 = E2 − (pxc)2 − (pyc)2 − (pzc)2

Or if all quantities have the same units,

m2 = E2 − p2
x − p2

y − p2
z (6.17)

This is applied to a single particle at a
time, not a system.

(e) Relativistic kinetic energy is

KE = E −mc2 = mc2(γ − 1) (6.18)

With these definitions we maintain the Laws
of Conservation of Energy and Momen-
tum.

6.7 An Example

Let’s solve the same problem that we did
classically in Section 6.3, shown in Figure
6.1.

Consider a collision between two billiard
balls on a horizontal pool table. The first
ball has mass m = 1 and initially moves to
the right at v0 = 0.60 towards the second
ballof mass 2m = 2, which is at rest. The
balls collide head on and separate in a situ-
ation where only kinetic energy needs to be
considered.

Find the speeds of the two balls after the
collision.

Now use the equations of Section 6.6, with
subscripts 0, t for before and 1, 2 for after
the collision.

Conserve momentum.

γ0(1)(v0) + γt(2)(vt) = γ1(1)(v1) + γ2(2)(v2)
1.25(1)(0.6) + 1(2)(0) = γ1(1)(v1) + γ2(2)(v2)

0.75 = γ1(1)(v1) + 2γ2(v2)
(6.19)

Conserve energy.

γ0(1) + γt(2) = γ1(1) + γ2(2)
1.25(1) + 1(2) = γ1(1) + γ2(2)

3.25 = γ1(1) + 2γ2 (6.20)

Solving the simultaneous Equations 6.19 and
6.20 is difficult since the unknown velocities
are in the γs as well as appearing by them-
selves. Here is how I did it. First I rear-
ranged Equation 6.20 for γ1

γ1 = 3.25− 2γ2 (6.21)

Put this into Equation 6.19

0.75 = (3.25− 2γ2)v1 + 2γ2v2

v1 =
0.75− 2γ2v2

3.25− 2γ2
(6.22)

Use this to write an expression for γ2
1

γ2
1 =

1
1− v2

1

=
1

1−
(

0.75− 2γ2v2

3.25− 2γ2

)2

=
(3.25− 2γ2)2

(3.25− 2γ2)2 − (0.75− 2γ2v2)2

=
(3.25− 2γ2)2

10.5625− 13γ2 + 4γ2
2 − 0.5625 + 3γ2v2 − 4γ2

2v
2
2

=
(3.25− 2γ2)2

10− γ2(13− 3v2) + 4γ2
2(1− v2

2)

=
(3.25− 2γ2)2

10− γ2(13− 3v2) + 4

=
(3.25− 2γ2)2

14− γ2(13− 3v2)
(6.23)
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We can equate this to the square of Equation
6.21

(3.25− 2γ2)2 =
(3.25− 2γ2)2

14− γ2(13− 3v2)

1 =
1

14− γ2(13− 3v2)
14− γ2(13− 3v2) = 1

γ2 =
13

13− 3v2
(6.24)

Finally, we square both sides in express γ2

in terms of v2

1
1− v2

2

=
169

169− 78v2 + 9v2
2

169− 78v2 + 9v2
2 = 169(1− v2

2) = 169− 169v2
2

178v2
2 − 78v2 = 0

v2 = 0 or v2 =
78
178

= 0.438

(6.25)

Using Equation 6.22 we find that v1 =
0.60 or v1 = −0.220. The first answers
are the initial velocities and the second an-
swers are the final velocities.

Now we can check to see whether these ex-
pressions maintain the Conservation Laws
for an observer moving at β = 0.50.

Putting these values into Equations 6.19 and
6.20 we get the results in Table 6.3 (all quan-
tities in the same unit).

So each observer (lab and moving) are happy
because momentum is conserved and energy
is conserved. They get different values for
the total energy and the total momentum,
but these values are not supposed to be
invariant. Instead the quantity

√
E2 − p2

should be invariant, see Table 6.4.

Initial Values Lab Moving Observer
v0 0.600 0.143
γ0 1.250 1.010
vt 0.000 -0.500
γt 1.000 1.155
Final Values
v1 -0.220 -0.648
γ1 1.025 1.313
v2 0.438 -0.079
γ2 1.112 1.003

Table 6.2: One Dimensional Collision of bil-
liard balls treated relativistically. Velocities
and dilation factors for Lab and Second Ob-
server.

Indeed
√
E2 − p2 = m is the invariant mass,

and invariant means the same before or after
a collision and for all observers.

6.8 Evidence

The most direct evidence of the validity
of these equations comes from radioactive
decay. Among the early pioneers of ra-
dioactivity (a term she coined) was Maria
Sklodowska who became Marie Curie when
she married. She chemically separated some
radioactive nuclides2, starting with several
tons of uranium ore (pitchblende) and ob-
taining less than a milligram of a nuclide
she named after her home country of Poland,
Polonium.

2Nuclide refers to a unique combination of pro-
tons and neutrons in a nucleus. Isotopes are several
nuclides that have the same number of protons but
different numbers of neutrons. Thus He4, O16, P b206

are three nuclides, while He4, He5, and He6 are
three isotopes of helium (and also three nuclides.
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Initial Lab Moving Observer Lab Moving Observer
p0 0.750 0.144 E0 1.250 1.010
pt 0.000 -1.154 Et 2.000 2.309
ptotal 0.750 -1.010 Etot 3.250 3.319
Final
p1 −0.225 −0.851 E1 1.025 1.313
p2 0.975 −0.159 E2 2.225 2.006
ptotal 0.750 −1.010 Etot 3.250 3.319

Table 6.3: Momenta and energy for relativistic collisions of two billiard balls.

Lab Moving
E p m =

√
E2 − p2 E p m =

√
E2 − p2

Mass 1 before 1.250 0.750 1.000 1.010 0.144 1.000
Mass 2 before 2.000 0.000 2.000 2.309 −1.155 2.000
Mass 1 after 1.025 −0.225 1.000 1.313 −0.852 1.000
Mass 2 after 2.225 0.975 2.000 2.006 −0.159 2.000

Table 6.4: Although energy and momentum values vary for different observers, the mass,
Equation 6.17, is an invariant for all observers

Scientists can now measure the mass of the
nuclides very accurately, and with these re-
sults we can see that mass is not conserved
but that the relativistic energy-momentum
equations do explain the process. Consider
the alpha decay of the most abundant iso-
tope of Polonium3,

Po210 → Pb206 +He4 (6.26)

Careful measurements of the masses of the
three nuclides, in “u”, in Equation 6.26
yield

3This isotope is often found in antistatic brushes
used in photography. It also is the isotope that killed
Alexander Litvinenko in 2006 (a lethal dose is less
than 1 µg!) This isotope is also used in remote power
sources (e.g. the moon.)

Nuclide Mass (u) Uncertainty (u)
Po210 209.9828737 0.0000013
Pb206 205.9744653 0.0000013
He4 4.00260325415 0.00000000006

If we check to see if mass is conserved we see
that

209.9828737 6= 205.9744653 + 4.0026033
= 209.9770686 (6.27)

where we have rounded to the same number
of digits after the decimal point.

Evidently the original nuclide has more mass
than the total mass of the products of the
decay. What has happened to the extra mass
that we started out with? The extra mass
ends up as kinetic energy of the two daughter
nuclides, so we expect that the total kinetic
energy of this decay will be (209.9828737 -
209.9770686) u = 0.00580515 u.
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This is using a mass unit for energy. We can
easily find the conversion from u to kg, 1u =
1.66053886×10−27 kilograms and convert to
get a kinetic energy of 1.66053886×10−30 kg,
and then use c = 299792458 m/s to get the
result in joules, 8.6637× 10−13 J. The most
common unit of energy when dealing with
atoms and nuclei is the electron Volt, 1 eV
= 1.60217646×10−19 J resulting in a kinetic
energy of 5.407×106 eV = 5.407 MeV.

The measured value for this decay is 5.407
MeV, in exact agreement.

6.9 Massless Particles

When you take Modern Physics you will dis-
cuss light not only as a wave (with wave-
length and frequency) but as a particle (with
momentum and energy.) When light is
treated as a particle it is called a photon.
The invariant mass of a photon is zero.

How do we treat the energy and momentum
of a photon? From the relativistic expres-
sions in Equations 6.15, 6.16, and 6.17 we
see that in order for momentum to be non-
zero when mass is zero, the value of γ must
be infinite, and hence the speed of the par-
ticle must be exactly 1. Also for the photon
Equation 6.17 tells us that

Ephoton = |pphoton| (6.28)

If you watch Star Trek you have heard the
word positron (Data had a positronic brain).
A positron has the same mass as an electron
but is positively charged. When a positron
meets an electron the two annihilate to pro-
duce photons, usually 2, rarely 3 or more.
The symbols for the electron and positron

are e−, e+ and for the photon γ—yes this is
confusing since we have used γ for the dila-
tion factor.

Consider the annihilation shown in Figure
6.2. An electron moving at 0.50 annihilates
with a positron at rest. After the collision
there are two photons moving in opposite
directions. We want to find the energy and
momentum of the two photons.

All quantities will be measured in the same
unit, the MeV. The mass of the electron and
positron is 0.511 MeV. For a speed of 0.50,
γ = 1.155.

Energy Conservation yields

1.155(0.511) + 1.000(0.511) = E1 + E2

1.101 = E1 + E2

(6.29)

Momentum conservation gives

1.155(0.511)(0.50) + 0 = p1 + p2

0.295 = −|p1|+ |p2|
0.295 = −E1 + E2 (6.30)

Solving the last two equations we get

E1 = |p1| = 0.698 MeV
E2 = |p2| = 0.403 MeV (6.31)

Table 6.5 summarizes the energy and mo-
mentum of the objects before and after the
annihilation and shows that both energy
and momentum are conserved. For the mo-
ment focus on the unprimed momenta and
energy—the primed quantities will be dis-
cussed in Section 6.12.
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Figure 6.2: A moving electron meets positron at rest. They annihilate leaving two photons.

6.10 The Compton Ef-
fect

One final example of using energy and mo-
mentum conservation is the derivation of the
Compton Formula.

In 1918 Ohio-born Arthur Compton began
studying the energy of scattered X-rays. He
found that the X-rays scattered off “free
electrons” and was able to use the ideas of
quantum mechanics and special relativity to
deduce the theory. For this achievement he
won the Nobel prize in physics in 1927.

Assume a photon of energy and momentum
E1 = p1 moves along the x-axis toward an
electron , mass m, at rest. After the colli-
sion the photon has energy and momentum
E2 = p2 and moves at the angle θ while the
electron has energy and momentum E and p
and moves at the angle φ, as shown in Figure
6.3.

In the lab it is relatively easy to measure
the photon energies before and after the col-
lision, and to measure the angle through
which the photon scatters. Our goal is to
find an expression for the final photon energy
as a function of initial photon energy, E1, the
electron mass, m, and the angle θ.

First write down Conservation of En-

ergy.

E1 +m = E2 + E

E = E1 +m− E2 (6.32)

For the horizontal component of momen-
tum, using the fact that for a photon energy
equals momentum,

E1 + 0 = E2 cos θ + p cosφ
p cosφ = E1 − E2 cos θ (6.33)

and in the y-direction

0 + 0 = E2 sin θ − p sinφ
p sinφ = E2 sin θ (6.34)

Now square Equations 6.33 and 6.34 and
add, using the fact that sin2 φ + cos2 φ = 1
to get

p2 = E2
2 + E2

1 − 2E1E2 cos θ (6.35)

Square Equation 6.32 to get

E2 = E2
1 +E2

2 +m2−2E1E2 +2mE1−2mE2

(6.36)

But E2 − p2 = m2, and putting Equations
6.36 and 6.35 into this and doing some alge-
bra yields

−E1E2 +mE1 −mE2 + E1E2 cos θ = 0
(6.37)
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Figure 6.3: Compton Effect: Scattering of a photon by an electron through an angle θ
.

and with a bit more algebra this can be writ-
ten in the form

m

E2
− m

E1
= 1− cos θ (6.38)

Compton measured wavelength rather than
energy, using the quantum mechanical re-
lation (also from Einstein) E = hc/λ and
wrote the equation (in SI units, with the c’s)
as

λ2 − λ1 =
h

mc
(1− cos θ) (6.39)

The change in wavelength is very small, since
h/mc = 2.42630994 × 10−12 m and X-rays
have wavelengths in the range of 1 × 10−8

to 1 × 10−11 m. The effect is unmistak-
able when we use gamma-ray photons with
shorter wavelengths, such as a gamma ray
from the decay of a common nuclide, cobalt-
60 with wavelength 1.2× 10−12 m.

6.11 Low Speed Approxima-
tions

For 300 years the expressions of classical me-
chanics worked perfectly fine to explain en-
ergy and momentum. Let’s chsck to see if
the relativistic equations become the same
as classical at low speeds.

Momentum

At low speed γ = 1 and the expression for
momentum reduces as

p = γmv → mv (6.40)

which is the classical expression.

Kinetic energy in relativity is defined as
E − m. Does this approach our classical
limit?

KE = E −m
= γm−m

= m
(

(1− v2)−1/2 − 1
)

≈ m
(

1 +
(
−1
2

)(
−v2

)
− 1
)

≈ 1
2
mv2 (6.41)

Success! At low speeds the relativistic
expression becomes the classical expres-
sion.

6.12 Lorentz Transforma-
tions

Earlier we had the Lorentz Transformations
for time and position. The transformations
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for energy and momentum are similar, and
relate the measurements of energy and mo-
mentum recorded by one observer to the en-
ergy and momentum recorded by a second
observer moving along the x-axis at velocity
β.

E′ = γ(E − βpx) E = γ(E′ − β′p′x)
p′x = γ(px − βE) px = γ(p′x − β′E′)

p′y = py p′z = pz (6.42)

Example Consider the positron-electron
annihilation of Section 6.9 as viewed
by an observer moving to the right at
β = 0.267946, γ = 1.03795389. What
does this observer measure for the en-
ergy and momentum of the two pho-
tons?

Table 6.5 shows the results of the origi-
nal calculations and the Lorentz trans-
formations. Notice that although the
two observers see different values for the
total energy and the total momentum,
they both see that momentum and en-
ergy conservation work.

6.13 Electric and Magnetic
Fields

The culmination of special relativity is the
description of electric and magnetic fields.
Here I will just describe the invariant quan-
tities and give the Lorentz Transformations.
This may be covered in a junior level E&M
course.

Michael Fowler lays out the basic is-
sue at http://galileo.phys.virginia.

edu/classes/252/rel\_el\_mag.html. A
neutral wire carries a current of moving
electrons, all having a velocity v to the
right. Outside the wire is a positive charge,
also moving right and with the same speed
v.

In this frame there is no electric force, but
there is a magnetic force on the charge, ~F =
q~v × ~B.

Imagine the view of an observer moving at
the same velocity as the external charge. For
her, the external charge is at rest, the elec-
trons are at rest, and the positive charge in
the wire moves to the left at speed v. There
is no magnetic force, and a classical view of
the wire would suggest no electric force since
the wire is still expected to be neutral.

This suggests a paradox that can be resolved
by considering length contraction. In the
correct analysis the wire is no longer neutral
in the second reference frame and there is an
electric force on the external charge.

Just as with space/time, and en-
ergy/momentum, the equations are easier if
we use the same units for both quantities.
In the SI system electric field is in units of
(N/C) while magnetic field is in units of
tesla, T. To get the two fields in the same
units, (N/C), multiply the magnetic field
by our conversion factor c. In the equations
below I assume the same units for E and
B.

Here are the Lorentz Transformations for
electric and magnetic fields—notice that
they are similar but not identical to our
other Lorentz Transformations.
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Before the Annihilation (MeV)
Electron Positron Total

px 0.295026 0.000000 0.295026
p′x 0.142121 -0.142117 0.000004
E 0.590052 0.511000 1.101052
E′ 0.530395 0.530394 1.060790
After the Annihilation (MeV)

Photon γ1 Photon γ2 Total
px -0.403013 0.698039 0.295026
p′x -0.07106 0.07106 0.00000
E 0.403013 0.698039 1.101052
E′ 0.530395 0.530395 1.060790

Table 6.5: Energy and Momentum in Positron Annihilation. In the unprimed system an
electron moving at 0.50 toward a stationary positron annihilates to produce two photons.
The primed values are tose seen by an observer moving to the right at 0.267946.

E′x = Ex B′x = Bx (6.43)
E′y = γ(Ey − βBz) B′y = γ(By + βEz)

(6.44)

E′z = γ(Ez + βBy) B′z = γ(Bz − βEy)
(6.45)

For space/time and momentum/energy we
look for invariant quantities. For elec-
tric and magnetic phenomena the invariants
are

• Charge

• E2 −B2

• ~E · ~B = ExBx + EyBy + EzBz

All applications of these will be left to future
courses.

6.14 Summary

In order to keep the Law of Conservation of
Momentum and the Law of Conservation of
Energy valid, we must redefine some quanti-
ties.

It is useful to have the same unit for energy,
mass, and momentum. If we use our tradi-
tional unit of energy, the conversion factors
for momentum and mass are

• Mass in units of energy = mc2 where m
is the mass in units like kg.

• Momentum in units of energy = pc
where p is in units like kg m/s.

Relativistic momentum is defined as −→p =
γm−→v where we can treat p as having units
of kg m/s providing v is in m/s and m is
in kg, or we can treat p and m as having
relativistic units of energy, wth v being the
dimensionless velocity.

Relativistic total energy is defined as E =
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γm if m is in relativistic energy units, or
E = γmc2 for m in kg.

With these definitions the Laws of Con-
servation of Momentum and Energy still
work.

The quantity m2 = E2 − p2 (relativistic
units) or (mc2)2 = E2 − (pc)2 (SI units) is
an invariant quantity, the same for all ob-
servers.

Kinetic energy is defined in relativistic units
as KE = E −m = (γ − 1)m

In the limit of low speeds the expressions for
momentum and kinetic energy revert to the
classical expressions.

Relativity allows for the existence of parti-
cles with no mass, with the only experimen-
tally observed such creature being the pho-
ton. Massless particles travel at the speed of
light, and for them E = p.

Two observers will measure different quanti-
ties for energy and momentum. The quanti-
ties are related by Lorentz transformations.
As always we assume that the observers
move along the x-axis.

E′ = γ(E − βpx) E = γ(E′ − β′p′x)
p′x = γ(px − βE) px = γ(p′x − β′E′)

p′y = py p′z = pz (6.46)

More complicated transformation equations
are available for electric and magnetic
fields.


