1. Your new advisor, Dr. Mayhem, is trying to find which of two galaxies hosts an AGN.

Dr. Mayhem points you to a paper by <u>Donely et al. (2012)</u>, hands you table with data from the Spitzer telescope, and gives the helpful advice of "just figure it out".

The table has flux data for the four IRAC detectors:

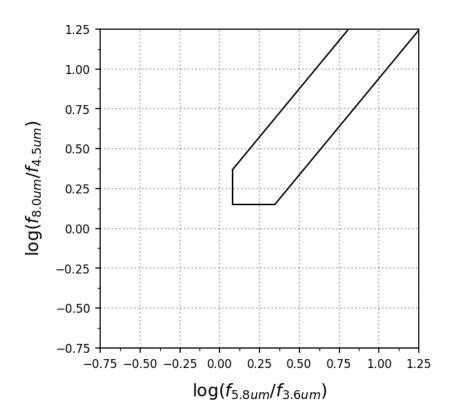
| IRAC channel | IRAC waveband [um] | flux [uJy] of galaxy A | flux [uJy] of galaxy B |
|--------------|--------------------|------------------------|------------------------|
| CH1          | 3.6                | 13.58                  | 17.49                  |
| CH2          | 4.5                | 18.15                  | 17.05                  |
| CH3          | 5.8                | 27.77                  | 12.62                  |
| CH4          | 8.0                | 49.23                  | 10.83                  |

- a) What part of the electromagnetic spectrum does the Spitzer/IRAC detectors observe?
- b) Why might an AGN have different fluxes in this wavelength range?

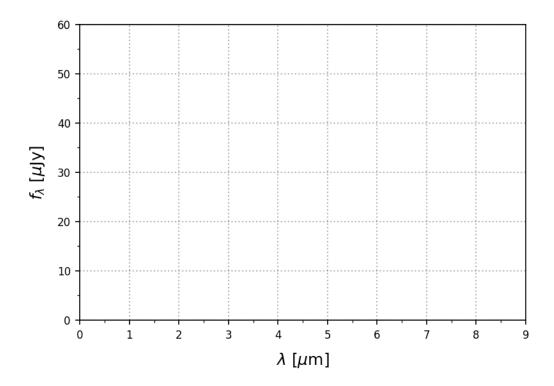
The paper states that a galaxy hosts an AGN if it meets the following criteria:

(i) 
$$x = log(f_5.6um / f_3.6um)$$
  $y = log(f_8.0um / f_4.5um)$ 

(ii) 
$$x > 0.08$$
  $y > 0.15$   $y > 1.21 x - 0.27$   $y < 1.21 x + 0.27$ 


(iii) 
$$f_4.5um > f_3.6um$$
  $f_5.8um > f_4.5um$   $f_8.0um > f_5.8um$ 

b) Qualitatively describe what each set of equations mean


c) First, let's calculate the equations in (i). For both galaxies A and B, use the flux radios to get the CH3-CH1 color.

e) Now calculate the CH4-CH2 colors.

f) Next, lets see how the two galaxies relate to the equations in (ii). On the graph, sketch a point for both galaxies A and B. Use the results from question (b) and (c).



g) Lastly, let's investigate how the fluxes change, like equations (iii). Sketch a simple SED using the fluxes in the table.



h) The time has come to face Dr. Mayhem! Which galaxy hosts an AGN? Why?

#### **SOLUTIONS**

### 1. Your new advisor, Dr. Mayhem, is trying to find which of two galaxies hosts an AGN.

Dr. Mayhem points you to a paper by <u>Donely et al. (2012)</u>, hands you table with data from the Spitzer telescope, and gives the helpful advice of "just figure it out".

The table has flux data for the four IRAC detectors:

| IRAC channel | IRAC waveband [um] | flux [uJy] of galaxy A | flux [uJy] of galaxy B |
|--------------|--------------------|------------------------|------------------------|
| CH1          | 3.6                | 13.58                  | 17.49                  |
| CH2          | 4.5                | 18.15                  | 17.05                  |
| CH3          | 5.8                | 27.77                  | 12.62                  |
| CH4          | 8.0                | 49.23                  | 10.83                  |

#### a) What part of the electromagnetic spectrum does the Spitzer/IRAC detectors observe?

Answer: Mid-infrared!

#### b) Why might an AGN have different fluxes in this wavelength range?

Answer: The central SMBH and accretion disk are surrounded by a torus of gas and dust. This cloud absorbs the high energy emission produced in the central engine and re-emits it in the infrared. This creates a continuous thermal blackbody spectrum. Star forming galaxies have weaker MIR emission here from dwarf stars and emission lines.

The paper states that a galaxy hosts an AGN if it meets the following criteria:

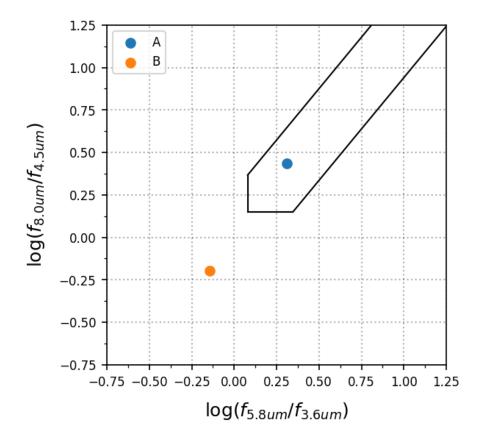
(i) 
$$x = log(f_5.6um / f_3.6um)$$
  $y = log(f_8.0um / f_4.5um)$ 

(ii) 
$$x > 0.08$$
  $y > 0.15$   $y > 1.21 x - 0.27$   $y < 1.21 x + 0.27$ 

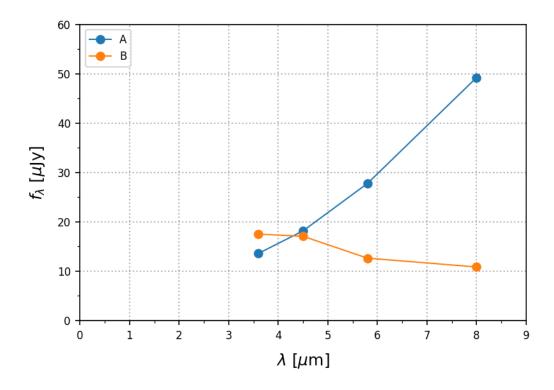
(iii) 
$$f_4.5um > f_3.6um$$
  $f_5.8um > f_4.5um$   $f_8.0um > f_5.8um$ 

## b) Qualitatively describe what each set of equations mean

- i) Answer: x and y are each flux ratios defining two colors
- ii) Answer: This set of equations draws a wedge in color space. A galaxy is an AGN if it is inside the wedge.
- iii) Answer: These inequalities state that the fluxes must always increase with wavelength to be an AGN.


c) First, let's calculate the equations in (i). For both galaxies A and B, use the flux radios to get the CH3-CH1 color.

Answer: 
$$x_A = log\left(\frac{27.77}{13.58}\right) = 0.311$$
  $x_B = log\left(\frac{12.62}{17.49}\right) = -0.142$ 


e) Now calculate the CH4-CH2 colors.

Answer: 
$$y_A = \log\left(\frac{49.23}{18.15}\right) = 0.433$$
  
 $y_B = \log\left(\frac{10.83}{17.05}\right) = -0.197$ 

f) Next, lets see how the two galaxies relate to the equations in (ii). On the graph, sketch a point for both galaxies A and B. Use the results from question (b) and (c).



g) Lastly, let's investigate how the fluxes change, like equations (iii). Sketch a simple SED using the fluxes in the table.



# h) The time has come to face Dr. Mayhem! Which galaxy hosts an AGN? Why?

Answer: Galaxy A is an AGN! Its IRAC colors fall inside the wedge, and its fluxes increase with wavelength.